
A UIMA-Based QA System

Chris Curtis, Nigel Kilmer, David McHugh



Approach
● UIMA text processing pipeline

○ DKPro suite of NLP modules
○ Custom query and answer processing modules

● Indri for indexing and passage retrieval



UIMA
● Unstructured Information Management Architecture
● Provides structure for a pipeline of text processing 

components

● CAS - Common Analysis Structure
○ Stores original text and annotations (feature 

structures) produced by components
○ Annotations exist in the context of a type hierarchy



DKPro
● Suite of UIMA modules corresponding to open-source 

NLP toolsets

○ Stanford Segmenter
○ OpenNLP POS Tagger
○ (OpenNLP Chunker)



Pipeline

TREC Question 
XML Reader

Question
Tokenizer

Question
POS Tagger

Question
Classifier

Search /
Passage 
Retrieval

Answer 
Candidate

Writer

Answer 
Candidate 

Ranker

Answer 
Candidate 
Generator



Question Classifier
● Simple classification based on wh-word in question:

○ “what” > entity
○ “who” > person
○ “when” > time
○ “why” > reason
○ “how” > method

● Annotation not used in baseline system



Search / Passage Retrieval
● Build a query using the NNs from question as keywords

○ #combine(NN1, NN2, …)

● Indri returns top 20 text snippets in windows around the 
matching terms

● Clearly we can improve on this approach



Answer Processing
● For each result returned by Indri, create a 

CandidateAnswer feature structure
○ Answer text
○ Score of the returned passage from Indri
○ Other features later (e.g. answer classification)

● Answers are ranked based on the Indri score

● No filtering of answers yet



Results
● Results calculated using TREC 2006 question set:

○ Strict MRR: 0.0176
○ Lenient MRR: 0.0510

● Low scores are due to placeholder versions of many 
components



Successes and Issues
● UIMA and DKPro allow us to easily create and integrate new modules into 

our pipeline
● Indexing using Indri was straightforward

● DKPro chunking modules producing warnings and errors, had to back off 
from using chunking of question text in our baseline

● Some UIMA feature structures are cumbersome to deal with (lists)
● No handling of question sets yet (apart from creating a feature structure 

type hierarchy for them)



UIMA CAS Example 1
[What is the name of the winning team?]
Sentence
   begin: 6
   end: 43
[What]
PR
   begin: 6
   end: 10
   PosValue: "WP"
[What]
Token
   begin: 6
   end: 10
   pos: PR
  begin: 6
  end: 10

PosValue: "WP"

[is]
V
   begin: 11
   end: 13
   PosValue: "VBZ"
[is]
Token
   begin: 11
   end: 13
   pos: V
  sofa: _InitialView
  begin: 11
  end: 13
 PosValue: "VBZ"



UIMA CAS Example 2
Search
   queryString: "#combine( number  students )"
   searchResults: NonEmptyFSList
  head: SearchResult
     docId: "678"
     uri: "APW19980601.1143"
     score: -6.755781840076132
     rank: 4
     snippet: "...(text removed due to lack of space)..."
  tail: NonEmptyFSList
     head: SearchResult

docId: "24"
...



References
David Ferrucci and Adam Lally. 2004. UIMA: An architectural approach to 
unstructured information processing in the corporate research environment. 
Natural Language Engineering, 10(3-4):327–348, September.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen Steimle, Markus 
Weimer, and Torsten Zesch. 2007. Darmstadt Knowledge Processing 
repository based on UIMA. In Proceedings of the First Workshop on 
Unstructured Information Management Architecture at Biannual Conference of 
the Society for Computational Linguistics and Language Technology, Tübingen, 
Germany, April.


