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Approach
● UIMA text processing pipeline

○ DKPro suite of NLP modules
○ Custom query and answer processing modules

● Indri for indexing and passage retrieval



UIMA
● Unstructured Information Management Architecture
● Provides structure for a pipeline of text processing 

components

● CAS - Common Analysis Structure
○ Stores original text and annotations (feature 

structures) produced by components
○ Annotations exist in the context of a type hierarchy



DKPro
● Suite of UIMA modules corresponding to open-source 

NLP toolsets

○ Stanford Segmenter
○ OpenNLP POS Tagger
○ (OpenNLP Chunker)
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Question Classifier
● Simple classification based on wh-word in question:

○ “what” > entity
○ “who” > person
○ “when” > time
○ “why” > reason
○ “how” > method

● Annotation not used in baseline system



Search / Passage Retrieval
● Build a query using the NNs from question as keywords

○ #combine(NN1, NN2, …)

● Indri returns top 20 text snippets in windows around the 
matching terms

● Clearly we can improve on this approach



Answer Processing
● For each result returned by Indri, create a 

CandidateAnswer feature structure
○ Answer text
○ Score of the returned passage from Indri
○ Other features later (e.g. answer classification)

● Answers are ranked based on the Indri score

● No filtering of answers yet



Results
● Results calculated using TREC 2006 question set:

○ Strict MRR: 0.0176
○ Lenient MRR: 0.0510

● Low scores are due to placeholder versions of many 
components



Successes and Issues
● UIMA and DKPro allow us to easily create and integrate new modules into 

our pipeline
● Indexing using Indri was straightforward

● DKPro chunking modules producing warnings and errors, had to back off 
from using chunking of question text in our baseline

● Some UIMA feature structures are cumbersome to deal with (lists)
● No handling of question sets yet (apart from creating a feature structure 

type hierarchy for them)



UIMA CAS Example 1
[What is the name of the winning team?]
Sentence
   begin: 6
   end: 43
[What]
PR
   begin: 6
   end: 10
   PosValue: "WP"
[What]
Token
   begin: 6
   end: 10
   pos: PR
  begin: 6
  end: 10

PosValue: "WP"

[is]
V
   begin: 11
   end: 13
   PosValue: "VBZ"
[is]
Token
   begin: 11
   end: 13
   pos: V
  sofa: _InitialView
  begin: 11
  end: 13
 PosValue: "VBZ"



UIMA CAS Example 2
Search
   queryString: "#combine( number  students )"
   searchResults: NonEmptyFSList
  head: SearchResult
     docId: "678"
     uri: "APW19980601.1143"
     score: -6.755781840076132
     rank: 4
     snippet: "...(text removed due to lack of space)..."
  tail: NonEmptyFSList
     head: SearchResult

docId: "24"
...
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