
WEb Based Answer eXtraction

JOHN GILMER

MICHAEL FOSTER
ADAM LEDYARD

DELIVERABLE 4:
FINAL QA SYSTEM

OVERVIEW

!  Pipeline
!  Redundancy Approach

!  Question Classification

!  Question Reformulation

!  Answer Processing

!  Results
!  Other Strategies

!  References

FINAL PIPELINE
Question

N-best
ranked

answers

Question
Classification

Answer
Projection

Query
Reformulation

Get Bing
Snippets

Answer
Processing

Lucene
Indexed
Corpus

REDUNDANCY
APPROACH
Ngram Generation:

 Snippets from the query results are broken up into
 unigrams, bigrams, trigrams, and tetragrams

Ngram Filtering:

 Ngrams are removed from consideration if the begin
 with or end with a stopword, certain how-type answer
 require numerals, NERs (first and last word is
 capitalized) are only kept with ‘thing’ and ‘location’
 type answer candidate

REDUNDANCY
APPROACH
Ngram Combining:

 Unigram Counts are added to bigram, trigram and
 tetragram counts and reranked

REDUNDANCY
APPROACH
Ngram&Scoring:

​"↓$%&'(&& = ​**↓$%&'( ∗∑,&-&$%&'(↑▒​012(345(,))/|
$%&'(|  

"="91:;

**=*1<=>?;@&*1,?A
,=,?>2:B<

|$%&'(|=?,<=;:&1D&,?>2:B<E

IDF calculations were done with the Lucene API on the
AQUAINT corpus.

QUESTION
CLASSIFICATION
!  Used Roth and Li’s Question Classification Taxonomy

!  Trained a MaxEnt Classifier on the 5500 training set

!  Features used:
!  Unigrams
!  POS tag unigrams
!  NP chunks found by nltk trained chunker using BIO tagged

CoNLL 2000 corpus (WSJ text)
!  Semantic feature based on Roth and Li’s semantic lists

!  Results: 84% accuracy based on TREC 10 labeled test data.

QUESTION
CLASSIFICATION
Output:

 Each Question was classified and a confidence
 score was attached to the Question Type that was
 used later in answer processing.

Answer Processing : Filter Method

 Based on the Question type Ngram answer
 candidates were either boosted or removed from
 consideration.

Open Class Answer Types → Boost scores
 Ex. Cities, Names

Closed Class Answer Types → Delete
 Ex. Mountains, Instruments, Numbers

QUESTION
REFORMULATION
!  Produced 2 similar queries for each question.

!  Query 1: Question text with topic inserted:
!  Replace pronouns with topic if present.
!  Check for partial topic text and fill in as needed.
!  Otherwise, insert topic in front of the question.
!  Remove stop words and punctuation.

!  Query 2: Same as query 1 but with topic in double quotes.
!  Answers candidates that came from queries with quotes

later receive a boost to their score.
!  Didn’t use exact query reformulation due to throttling and

time limitations

ANSWER PROCESSING

1.  Answer Processing by Question Type.
2.  Boost Ngram counts from the first 10 snippets from Bing.

3.  Check AQUAINT corpus

1.  Collect all proper noun phrases from topic
2.  Remove answer from candidate answers if Lucene

cannot find a document that contains both a proper noun
from the topic and the full ngram answer by using
Lucene’s Phrase Query and Boolean Query classes.

RESULTS
TREC 2006

TREC 2007

Strict Lenient
100 chars 0.106 0.239
250 chars 0.107 0.239

Strict Lenient
100 chars 0.124 0.259
250 chars 0.124 0.259

OTHER
STRATEGIES

FRAMENET AND
RERANKING

!  Tried developing a Re-ranker based on Ravichandran et al.
using modified feature selection based on what we could
extract from our system.

!  Modified features:
!  Used overlapping frames in FrameNet instead of patterns firing

!  Found all frames one relation away in the hierarchies in common
with question and all snippet content-full words

!  Number of words in the topic contained in snippet
!  Number of words in the query contained in the snippet
!  Binary feature if in Bing’s Top Ten results
!  Binary feature if snippet is result from exact match query
!  Answer Type with value equal to 3 * confidence score

UNIQUE ANSWER
CANDIDATE RERANKING
!  Borrowed concept from Tristan, Stefan & Chris’ group.

!  Reranked answer candidates based on the number of
repeated terms.

!  Down weighted answer candidate score as follows:

!  s = s * c ^ n
!  Where:

!  s = Answer candidate score.
!  c = A constant between 0 and 1.
!  n = the number of terms in the answer that were found in

 other answers
!  No boost to MRR from this approach.

