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Big idea: Classification
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« Support Vector Machines classifier (Radial basis function kernel)
e ChiSquared feature selection



il
Big Idea: Caching

 Everything.



System Pipeline

extract question features

classify questions
v
extract basic web result-level answer type features

v

rank ngrams & take top 40

v

extract remaining answer feature types

take intersection of web result-level features associated with each top ngram

!

add additional features
re-rank candidates based on classifier results

'

use top 20 candidates of new ranking to retrieve docs from lucene




Query Processing

« Approaches tried in previous versions:
= D2: basic shallow processing
= D3: using lexical resources
o Classifier approach:
o D4: loosely based on Li & Roth’s syntactic features
- Stemmed ngrams (n =1,2,3,4)
* Weights for temporal, location or numerical question words

- POS-tagged tokens from question & target with stopwords
removed

* Head NP & VP chunks — handwritten grammar
* Question word(s)
o |ssues:
- Addition of extra features beyond unigrams didn’t make a
significant difference & increased total runtime
» Final system: features are unigrams
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Fig. 1: Features and Performance (experimentation phase)
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Classifier & Web-based Boosting

e Train question classifier (qc)
e Classify question

» Extract web result-level answer type features that

require punctuation guided by qc

= Before text processing a web result

= take the qc, e.g., ABBR

o extract all punctuation dependent ABBR patterns

= ABBR_PUNC_ABREV =
'(M\.D\.|M\.A\.|M\.S\.|A\.D\.|B\.C\.|B\.S\.|Ph\.D|D\.C\.[NAAC
P|AARP|NASA|NATO|UNICEF|U\.S\.|JUSMC|USAF|USSR|Y
MCA)'



il
Classifier & Web-based Boosting

* Tokenize, remove punct., etc
» Re-rank ngrams & take top 40
= Use Lin’s web redundancy algorithm for re-ranking
 Extract ngram level answer pattern features as guided
by qc
= Similar to above but based on a particular answer

candidate — no punctuation patterns
» (more info below)



il
Classifier & Web-based Boosting

e Add the intersection of all web result-level features
associated with each top-40 ngram, n

*Nwew [ (M, W)

s Where f returns the set of features for w if n appeared
there

« Add additional features like top web result rank



il
Classifier & Web-based Boosting

e Re-rank based on classifier

= Each candidate is assigned a probability of being a “yes”
answer

= Training based on checking 2004, 2005 answer
candidates against their answer patterns using same
features
 Use the top 20 candidates from the new ranking to
retrieve docs using lucene



Answer Pattern Detection

We used a set of regular expressions to detect answer types in addition to
our existing filters and weighting logic.

If we have a question classified as type:
['LOC', 'HUM', 'NUM', 'ABBR', 'ENTY', 'DESC']

If 'ENTY', a set of regular expressions for subclasses are triggered (sports,
religion, colors, etc ):

Example:

ENTY_PLANTS =

set(['rose', 'weed', 'tulip', 'daisy’, 'flower', 'orchid', 'bonzai', 'dog
wood'])

pattern values['plant'] = ['(' + '|'.join(self.ENTY_PLANTS) + ')']

This pattern dictionary is iterated over to find matches in the text and
provide for features and boost in weighting for the web results.
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Results, Issues & Successes
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