Deliverable #4

Marie-Renée Arend
Josh Cason
Anthony Gentile

4 June 2013

Big idea: Classification

Download Support UserGuide Examples Reference 2008 " Custom Semch Searcl

The scikit-learn scikit-learn: machine learning in Python

international code
sprint is around the
corner! Please, sponsor
us

scikit-learn 0.13.1 is M S 0 et e
available for download. See
what's new and tips on

WO (omrae bty Comatrerty

ety vwagena --.—,.-uw

ative components - NMF - Train time 0.85

m%‘,‘;t} ls oy |
(LA KD It | e
s el J D

s | 7% o]
&t | I7F

LSRR B - 4 ki/

B Kl A e

Easy -to-use and general purpose machlne Ieamlng in Python

T

 Scikit Learn python package

« Support Vector Machines classifier (Radial basis function kernel)
e ChiSquared feature selection

il
Big Idea: Caching

 Everything.

System Pipeline

extract question features

classify questions
v
extract basic web result-level answer type features

v

rank ngrams & take top 40

v

extract remaining answer feature types

take intersection of web result-level features associated with each top ngram

!

add additional features
re-rank candidates based on classifier results

'

use top 20 candidates of new ranking to retrieve docs from lucene

Query Processing

« Approaches tried in previous versions:
= D2: basic shallow processing
= D3: using lexical resources
o Classifier approach:
o D4: loosely based on Li & Roth’s syntactic features
- Stemmed ngrams (n =1,2,3,4)
* Weights for temporal, location or numerical question words

- POS-tagged tokens from question & target with stopwords
removed

* Head NP & VP chunks — handwritten grammar
* Question word(s)
o |ssues:
- Addition of extra features beyond unigrams didn’t make a
significant difference & increased total runtime
» Final system: features are unigrams

0.8

0.795

0.79

0.785

0.775

0.77

Mk=75
mk =100

ngrams

Mk =150
®mk =200

Mk=250

ngrams, ngrams, ngrams, ngrams, ngrams, ngrams, ngrams, All
weights weights, weights, weights, weights, POS, POS, features
POS POS, POS, chunks, chunks, gWord

chunks gWord qWord gWord

Fig. 1: Features and Performance (experimentation phase)

il
Classifier & Web-based Boosting

e Train question classifier (qc)
e Classify question

» Extract web result-level answer type features that

require punctuation guided by qc

= Before text processing a web result

= take the qc, e.g., ABBR

o extract all punctuation dependent ABBR patterns

= ABBR_PUNC_ABREV =
'(M\.D\.|M\.A\.|M\.S\.|A\.D\.|B\.C\.|B\.S\.|Ph\.D|D\.C\.[NAAC
P|AARP|NASA|NATO|UNICEF|U\.S\.|JUSMC|USAF|USSR|Y
MCA)'

il
Classifier & Web-based Boosting

* Tokenize, remove punct., etc
» Re-rank ngrams & take top 40
= Use Lin’s web redundancy algorithm for re-ranking
 Extract ngram level answer pattern features as guided
by qc
= Similar to above but based on a particular answer

candidate — no punctuation patterns
» (more info below)

il
Classifier & Web-based Boosting

e Add the intersection of all web result-level features
associated with each top-40 ngram, n

*Nwew [(M, W)

s Where f returns the set of features for w if n appeared
there

« Add additional features like top web result rank

il
Classifier & Web-based Boosting

e Re-rank based on classifier

= Each candidate is assigned a probability of being a “yes”
answer

= Training based on checking 2004, 2005 answer
candidates against their answer patterns using same
features
 Use the top 20 candidates from the new ranking to
retrieve docs using lucene

Answer Pattern Detection

We used a set of regular expressions to detect answer types in addition to
our existing filters and weighting logic.

If we have a question classified as type:
['LOC', 'HUM', 'NUM', 'ABBR', 'ENTY', 'DESC']

If 'ENTY', a set of regular expressions for subclasses are triggered (sports,
religion, colors, etc):

Example:

ENTY_PLANTS =

set(['rose', 'weed', 'tulip', 'daisy’, 'flower', 'orchid', 'bonzai', 'dog
wood'])

pattern values['plant'] = ['(' + '|'.join(self.ENTY_PLANTS) + ')']

This pattern dictionary is iterated over to find matches in the text and
provide for features and boost in weighting for the web results.

0.185

0.18

||

k= k= k= k=
450 5oo 550 6oo 700 800 QOO0 1000

Experiment: Select k best features using X2 selection
(Numbers are lenient MRR scores for 2006)

0.175
0.7
0.165
0.16
0.155
0.15
0.145 -

K= K= K=
1500 2000 3000

Results, Issues & Successes

0.20

Results analysis

Issues

= 0 for 2007 strict MRR
Successes

M Strict MRR

0.8

M Lenient MRR o

0.6

044

012

040

Notes:

= All answer candidates
were less than or equal
to 100 chars

0.08

0.06

0.04

0.02

0.00 -

D2 D3 D4:2006 D4:2007

Resources

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O'Reilly
Media.

Graff, D. (Ed.). (2002). The AQUAINT corpus of English news text. Linguistic Data
Consortium.

Hatcher, E., Gospodnetic, O., & McCandless, M. (2004). Lucene in action.

Li, X. & Roth, D. (2005). Learning question classifiers: The role of semantic information.
Natural Language Engineering, 1(1), Retrieved from http://12.cs.uiuc.edu

Lin, J. (2007). An exploration of the principles underlying redundancy-based factoid
question answering. ACM Transactions on Information Systems (TOIS),25(2), 6.

Mishne, G. & de Rijke, M. (2005). Query formulation for answer processing. Published
research, Informatics Institute, University of Amsterdam. Retrieved from
http://dare.uva.nl

Resnik, Philip. (1995). Disambiguating Noun Groupings with Respect to WordNet
Senses. Third Workshop on Very Large Corpora. Retrieved from

http://acl.ldc.upenn.edu/W/W95/W95-0105.pdf
http://acl.ldc.upenn.edu/W/W95/W95-0105.pdf
http://acl.ldc.upenn.edu/W/W95/W95-0105.pdf
http://acl.ldc.upenn.edu/W/W95/W95-0105.pdf

