Deliverable #4

Marie-Renée Arend Josh Cason Anthony Gentile

4 June 2013

Big idea: Classification

- Scikit Learn python package
- Support Vector Machines classifier (Radial basis function kernel)
- Chi Squared feature selection

Big Idea: Caching

• Everything.

Query Processing

- Approaches tried in previous versions:
 - D2: basic shallow processing
 - D3: using lexical resources
- Classifier approach:
 - D4: loosely based on Li & Roth's syntactic features
 - Stemmed ngrams (*n* = 1,2,3,4)
 - Weights for temporal, location or numerical question words
 - POS-tagged tokens from question & target with stopwords removed
 - Head NP & VP chunks handwritten grammar
 - Question word(s)
 - Issues:
 - Addition of extra features beyond unigrams didn't make a significant difference & increased total runtime
 - Final system: features are unigrams

Fig. 1: Features and Performance (experimentation phase)

- Train question classifier (qc)
- Classify question
- Extract web result-level answer type features that require punctuation guided by qc
 - Before text processing a web result
 - take the qc, e.g., ABBR
 - extract all punctuation dependent ABBR patterns
 - ABBR_PUNC_ABREV = '(M\.D\.|M\.A\.|M\.S\.|A\.D\.|B\.C\.|B\.S\.|Ph\.D|D\.C\.|NAAC P|AARP|NASA|NATO|UNICEF|U\.S\.|USMC|USAF|USSR|Y MCA)'

- Tokenize, remove punct., etc
- Re-rank ngrams & take top 40
 Use Lin's web redundancy algorithm for re-ranking
- Extract ngram level answer pattern features as guided by qc
 - Similar to above but based on a particular answer candidate – no punctuation patterns
 - (more info below)

- Add the intersection of all web result-level features associated with each top-40 ngram, n
 - $\cap \cap_{w \in W} f(n,w)$
 - Where f returns the set of features for w if n appeared there
- Add additional features like top web result rank

- Re-rank based on classifier
 - Each candidate is assigned a probability of being a "yes" answer
 - Training based on checking 2004, 2005 answer candidates against their answer patterns using same features
- Use the top 20 candidates from the new ranking to retrieve docs using lucene

Answer Pattern Detection

We used a set of regular expressions to detect answer types in addition to our existing filters and weighting logic.

If we have a question classified as type: ['LOC', 'HUM', 'NUM', 'ABBR', 'ENTY', 'DESC']

If 'ENTY', a set of regular expressions for subclasses are triggered (sports, religion, colors, etc):

Example:

```
ENTY_PLANTS =
set(['rose','weed','tulip','daisy','flower','orchid','bonzai','dog
wood'])
pattern_values['plant'] = ['(' + '|'.join(self.ENTY_PLANTS) + ')']
```

This pattern dictionary is iterated over to find matches in the text and provide for features and boost in weighting for the web results.

Experiment: Select k best features using X² selection (Numbers are lenient MRR scores for 2006)

Results, Issues & Successes

	Strict MRR	Lenient MRR
D2	0.0039	0.0455
D3	0.0070	0.0475
D4: 2006	0.0426	0.1801
D4: 2007	0.0000	0.0828

- Results analysis
- Issues
 - o for 2007 strict MRR
- Successes

• Notes:

All answer candidates
 were less than or equal
 to 100 chars

Resources

- Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O'Reilly Media.
- Graff, D. (Ed.). (2002). The AQUAINT corpus of English news text. Linguistic Data Consortium.
- Hatcher, E., Gospodnetic, O., & McCandless, M. (2004). Lucene in action.
- Li, X. & Roth, D. (2005). Learning question classifiers: The role of semantic information. Natural Language Engineering, 1(1), Retrieved from http://12.cs.uiuc.edu
- Lin, J. (2007). An exploration of the principles underlying redundancy-based factoid question answering. ACM Transactions on Information Systems (TOIS),25(2), 6.
- Mishne, G. & de Rijke, M. (2005). Query formulation for answer processing. Published research, Informatics Institute, University of Amsterdam. Retrieved from http://dare.uva.nl
- Resnik, Philip. (1995). Disambiguating Noun Groupings with Respect to WordNet Senses. Third Workshop on Very Large Corpora. Retrieved from http://acl.ldc.upenn.edu/W/W95/W95-0105.pdf