Ling573 NLP Systems and Applications May 7, 2013

Local Context and SMT for Question Expansion

• "Statistical Machine Translation for Query Expansion in Answer Retrieval", Riezler et al, 2007

Investigates data-driven approaches to query exp.

Local Context and SMT for Question Expansion

• "Statistical Machine Translation for Query Expansion in Answer Retrieval", Riezler et al, 2007

- Investigates data-driven approaches to query exp.
 - Local context analysis (pseudo-rel. feedback)

Local Context and SMT for Question Expansion

• "Statistical Machine Translation for Query Expansion in Answer Retrieval", Riezler et al, 2007

Investigates data-driven approaches to query exp.

- Local context analysis (pseudo-rel. feedback)
- Contrasts: Collection global measures
 - Terms identified by statistical machine translation
 - Terms identified by automatic paraphrasing

- Fundamental challenge in QA (and IR)
 - Bridging the "lexical chasm"

- Fundamental challenge in QA (and IR)
 - Bridging the "lexical chasm"
 - Divide between user's info need, author's lexical choice
 - Result of linguistic ambiguity
- Many approaches:
 - QA

- Fundamental challenge in QA (and IR)
 - Bridging the "lexical chasm"
 - Divide between user's info need, author's lexical choice
 - Result of linguistic ambiguity
- Many approaches:
 - QA
 - Question reformulation, syntactic rewriting
 - Ontology-based expansion
 - MT-based reranking
 - IR:

- Fundamental challenge in QA (and IR)
 - Bridging the "lexical chasm"
 - Divide between user's info need, author's lexical choice
 - Result of linguistic ambiguity
- Many approaches:
 - QA
 - Question reformulation, syntactic rewriting
 - Ontology-based expansion
 - MT-based reranking
 - IR: query expansion with pseudo-relevance feedback

Task & Approach

- Goal:
 - Answer retrieval from FAQ pages
 - IR problem: matching queries to docs of Q-A pairs
 - QA problem: finding answers in restricted document set

Task & Approach

- Goal:
 - Answer retrieval from FAQ pages
 - IR problem: matching queries to docs of Q-A pairs
 - QA problem: finding answers in restricted document set
- Approach:
 - Bridge lexical gap with statistical machine translation
 - Perform query expansion
 - Expansion terms identified via phrase-based MT

- Varied results for query expansion
- IR:
 - External resources:

- Varied results for query expansion
- IR:
 - External resources:
 - Inconclusive (Vorhees), some gain (Fang)

- Varied results for query expansion
- IR:
 - External resources:
 - Inconclusive (Vorhees), some gain (Fang)
 - Local, global collection statistics: Substantial gains
- QA:

- Varied results for query expansion
- IR:
 - External resources:
 - Inconclusive (Vorhees), some gain (Fang)
 - Local, global collection statistics: Substantial gains
- QA:
 - External resources: mixed results
 - Local, global collection stats: sizable gains

• Prior FAQ collections limited in scope, quality

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections
 - 1-2.8M Q-A pairs
 - Inspection shows poor quality
- Extracted from 4B page corpus

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections
 - 1-2.8M Q-A pairs
 - Inspection shows poor quality
- Extracted from 4B page corpus (they're Google)
 - Precision-oriented extraction

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections
 - 1-2.8M Q-A pairs
 - Inspection shows poor quality
- Extracted from 4B page corpus (they're Google)
 - Precision-oriented extraction
 - Search for 'faq', Train FAQ page classifier → ~800K pages

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections
 - 1-2.8M Q-A pairs
 - Inspection shows poor quality
- Extracted from 4B page corpus (they're Google)
 - Precision-oriented extraction
 - Search for 'faq', Train FAQ page classifier → ~800K pages
 - Q-A pairs: trained labeler: features?

- Prior FAQ collections limited in scope, quality
 - Web search and scraping 'FAQ' in title/url
 - Search in proprietary collections
 - 1-2.8M Q-A pairs
 - Inspection shows poor quality
- Extracted from 4B page corpus (they're Google)
 - Precision-oriented extraction
 - Search for 'faq', Train FAQ page classifier → ~800K pages
 - Q-A pairs: trained labeler: features?
 - punctuation, HTML tags (,..), markers (Q:), lexical (what,how)
 - → 10M pairs (98% precision)

- SMT query expansion:
 - Builds on alignments from SMT models

- SMT query expansion:
 - Builds on alignments from SMT models
- Basic noisy channel machine translation model:
 - e: English; f: French $\operatorname{arg\,max} p(e \mid f) = \operatorname{argmax} p(f \mid e)p(e)$

- SMT query expansion:
 - Builds on alignments from SMT models
- Basic noisy channel machine translation model:
 - e: English; f: French $\arg \max p(e | f) = \arg \max p(f | e)p(e)$
 - p(e): 'language model'; p(f|e): translation model

- SMT query expansion:
 - Builds on alignments from SMT models
- Basic noisy channel machine translation model:
 - e: English; f: French $\arg \max p(e | f) = \arg \max p(f | e)p(e)$
 - p(e): 'language model'; p(f|e): translation model
 - Calculated from relative frequencies of phrases
 - Phrases: larger blocks of aligned words

- SMT query expansion:
 - Builds on alignments from SMT models
- Basic noisy channel machine translation model:
 - e: English; f: French $\arg \max p(e \mid f) = \arg \max p(f \mid e)p(e)$
 - p(e): 'language model'; p(f|e): translation model
 - Calculated from relative frequencies of phrases
 - Phrases: larger blocks of aligned words
 - Sequence of phrases:

- SMT query expansion:
 - Builds on alignments from SMT models
- Basic noisy channel machine translation model:
 - e: English; f: French $\arg \max p(e | f) = \arg \max p(f | e)p(e)$
 - p(e): 'language model'; p(f|e): translation model
 - Calculated from relative frequencies of phrases
 - Phrases: larger blocks of aligned words
 - Sequence of phrases:

$$p(f_i^I | e_i^I) = \prod_{i=1}^{I} p(f_i | e_i)$$

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)
- Goal:
 - Learn alignments b/t question words & synonymous answer words

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)
- Goal:
 - Learn alignments b/t question words & synonymous answer words
 - Not interested in fluency, ignore that part of MT model
- Issues: Differences from typical MT

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)
- Goal:
 - Learn alignments b/t question words & synonymous answer words
 - Not interested in fluency, ignore that part of MT model
- Issues: Differences from typical MT
 - Length differences

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)
- Goal:
 - Learn alignments b/t question words & synonymous answer words
 - Not interested in fluency, ignore that part of MT model
- Issues: Differences from typical MT
 - Length differences → Modify null alignment weights
 - Less important words

- View Q-A pairs from FAQ as translation pairs
 - Q as translation of A (and vice versa)
- Goal:
 - Learn alignments b/t question words & synonymous answer words
 - Not interested in fluency, ignore that part of MT model
- Issues: Differences from typical MT
 - Length differences → Modify null alignment weights
 - Less important words → Use intersection of bidirectional alignments

Example

- Q: "How to live with cat allergies"
- Add expansion terms
 - Translations not seen in original query

(how, how) (to, to) (live, live) (with, with) (cat, pet) (allergies, allergies) (how, how) (to, to) (live, live) (with, with) (cat, cat) (allergies, allergy) (how, how) (to, to) (live, live) (with, with) (cat, cat) (allergies, food) (how, how) (to, to) (live, live) (with, with) (cat, cats) (allergies, allergies)

SMT-based Paraphrasing

- Key approach intuition:
 - Identify paraphrases by translating to and from a 'pivot' language

SMT-based Paraphrasing

- Key approach intuition:
 - Identify paraphrases by translating to and from a 'pivot' language
 - Paraphrase rewrites yield phrasal 'synonyms'
 - E.g. translate E -> C -> E: find E phrases aligned to C

- Key approach intuition:
 - Identify paraphrases by translating to and from a 'pivot' language
 - Paraphrase rewrites yield phrasal 'synonyms'
 - E.g. translate E -> C -> E: find E phrases aligned to C
- Given paraphrase pair (trg, syn): pick best pivot

- Key approach intuition:
 - Identify paraphrases by translating to and from a 'pivot' language
 - Paraphrase rewrites yield phrasal 'synonyms'
 - E.g. translate E -> C -> E: find E phrases aligned to C
- Given paraphrase pair (trg, syn): pick best pivot
 p(syn|trg) = max p(src|trg)p(syn|src)

 $p(trg \mid syn) = \max_{src} p(src \mid syn)p(trg \mid src)$

- Features employed:
 - Phrase translation probabilities, lexical translation probabilities, reordering score, # words, # phrases, LM

- Features employed:
 - Phrase translation probabilities, lexical translation probabilities, reordering score, # words, # phrases, LM
- Trained on NIST multiple Chinese-English translations

• Features employed:

- Phrase translation probabilities, lexical translation probabilities, reordering score, # words, # phrases, LM
- Trained on NIST multiple Chinese-English translations

$$p(syn_{1}^{I} | trg_{1}^{I}) = \left(\prod_{i=1}^{I} p_{\phi}(syn_{i} | trg_{i})^{\lambda_{\phi}}\right)$$
$$\times p_{\phi'}(trg_{i} | syn_{i})^{\lambda_{\phi'}} \times p_{w}(syn_{i} | trg_{i})^{\lambda_{w}}$$
$$\times p_{w'}(trg_{i} | syn_{i})^{\lambda_{w'}} \times p_{d}(syn_{i}, trg_{i})^{\lambda_{d}})$$
$$\times l_{w}(syn_{1}^{I})^{\lambda_{l}} \times c_{\phi}(syn_{1}^{I})^{\lambda_{c}} \times p_{LM}(syn_{1}^{I})^{\lambda_{LM}}$$

Example

- Q: "How to live with cat allergies"
- Expansion approach:
 - Add new terms from n-best paraphrases

(how, how) (to live, to live) (with cat, with cat) (allergies, allergy) (how, ways) (to live, to live) (with cat, with cat) (allergies, allergies) (how, how) (to live with, to live with) (cat, feline) (allergies, allergies) (how to, how to) (live, living) (with cat, with cat) (allergies, allergies) (how to, how to) (live, life) (with cat, with cat) (allergies, allergies) (how, way) (to live, to live) (with cat, with cat) (allergies, allergies) (how, how) (to live, to live) (with cat, with cat) (allergies, allergies) (how, how) (to live, to live) (with cat, with cat) (allergies, allergens) (how, how) (to live, to live) (with cat, with cat) (allergies, allergens)

- Weighted linear combination of vector similarity vals
 - Computed between query and fields of Q-A pair

- Weighted linear combination of vector similarity vals
 - Computed between query and fields of Q-A pair
- 8 Q-A pair fields:
 - 1) Full FAQ text; 2) Question text; 3) answer text;
 - 4) title text; 5) 1-4 without stopwords

- Weighted linear combination of vector similarity vals
 - Computed between query and fields of Q-A pair
- 8 Q-A pair fields:
 - 1) Full FAQ text; 2) Question text; 3) answer text;
 - 4) title text; 5) 1-4 without stopwords
 - Highest weights:

- Weighted linear combination of vector similarity vals
 - Computed between query and fields of Q-A pair
- 8 Q-A pair fields:
 - 1) Full FAQ text; 2) Question text; 3) answer text;
 - 4) title text; 5) 1-4 without stopwords
 - Highest weights: Raw Q text;
 - Then stopped full text, stopped Q text
 - Then stopped A text, stopped title text
 - No phrase matching or stemming

- SMT Term selection:
 - New terms from 50-best paraphrases
 - 7.8 terms added

- SMT Term selection:
 - New terms from 50-best paraphrases
 - 7.8 terms added
 - New terms from 20-best translations
 - 3.1 terms added
 - Why?

- SMT Term selection:
 - New terms from 50-best paraphrases
 - 7.8 terms added
 - New terms from 20-best translations
 - 3.1 terms added
 - Why? paraphrasing more constrained, less noisy
- Weighting: Paraphrase: same; Trans: higher A text

- SMT Term selection:
 - New terms from 50-best paraphrases
 - 7.8 terms added
 - New terms from 20-best translations
 - 3.1 terms added
 - Why? paraphrasing more constrained, less noisy
- Weighting: Paraphrase: same; Trans: higher A text
- Local expansion (Xu and Croft)
 - top 20 docs, terms weighted by tfidf of answers

- SMT Term selection:
 - New terms from 50-best paraphrases
 - 7.8 terms added
 - New terms from 20-best translations
 - 3.1 terms added
 - Why? paraphrasing more constrained, less noisy
- Weighting: Paraphrase: same; Trans: higher A text
- Local expansion (Xu and Croft)
 - top 20 docs, terms weighted by tfidf of answers
 - Use answer preference weighting for retrieval
 - 9.25 terms added

- Test queries from MetaCrawler query logs
 - 60 well-formed NL questions

- Test queries from MetaCrawler query logs
 - 60 well-formed NL questions
- Issue: Systems fail on 1/3 of questions
 - No relevant answers retrieved
 - E.g. "how do you make a cornhusk doll?", "what does 8x certification mean", etc
 - Serious recall problem in QA DB

- Test queries from MetaCrawler query logs
 - 60 well-formed NL questions
- Issue: Systems fail on 1/3 of questions
 - No relevant answers retrieved
 - E.g. "how do you make a cornhusk doll?", "what does 8x certification mean", etc
 - Serious recall problem in QA DB
- Retrieve 20 results:
 - Compute evaluation measures @10, 20

- Test queries from MetaCrawler query logs
 - 60 well-formed NL questions
- Issue: Systems fail on 1/3 of questions
 - No relevant answers retrieved
 - E.g. "how do you make a cornhusk doll?", "what does 8x certification mean", etc
 - Serious recall problem in QA DB
- Retrieve 20 results:
 - Compute evaluation measures @10, 20

• Manually label top 20 answers by 2 judges

- Manually label top 20 answers by 2 judges
- Quality rating: 3 point scale
 - adequate (2): Includes the answer
 - material (1): Some relevant information, no exact ans
 - unsatisfactory (0): No relevant info

- Manually label top 20 answers by 2 judges
- Quality rating: 3 point scale
 - adequate (2): Includes the answer
 - material (1): Some relevant information, no exact ans
 - unsatisfactory (0): No relevant info
- Compute 'Success_{type} @ n'
 - Type: 2,1,0 above
 - n: # of documents returned
- Why not MRR?

- Manually label top 20 answers by 2 judges
- Quality rating: 3 point scale
 - adequate (2): Includes the answer
 - material (1): Some relevant information, no exact ans
 - unsatisfactory (0): No relevant info
- Compute 'Success_{type} @ n'
 - Type: 2,1,0 above
 - n: # of documents returned
- Why not MRR? Reduce sensitivity to high rank
 - Reward recall improvement

- Manually label top 20 answers by 2 judges
- Quality rating: 3 point scale
 - adequate (2): Includes the answer
 - material (1): Some relevant information, no exact ans
 - unsatisfactory (0): No relevant info
- Compute 'Success_{type} @ n'
 - Type: 2,1,0 above
 - n: # of documents returned
- Why not MRR? Reduce sensitivity to high rank
 - Reward recall improvement
 - MRR rewards systems with answers in top 1, but poorly on everything else

Results

	$S_2@10$	$S_2@20$	$S_{1,2}@10$	$S_{1,2}$ @20
baseline tfidf	27	35	58	65
local expansion	30 (+ 11.1)	40 (+ 14.2)	57 (- 1)	63 (- 3)
SMT-based expansion	38 (+ 40.7)	43 (+ 22.8)	58	65

Discussion

- Compare baseline retrieval to:
 - Local RF expansion
 - Combined translation, paraphrase based expansion

Discussion

- Compare baseline retrieval to:
 - Local RF expansion
 - Combined translation, paraphrase based expansion
- Both forms of query expansion improve baseline
 - 2 @10: Local: +11%; SMT: +40.7%
 - 2,1 (easier task): little change

Example Expansions

eplacement t structure igm
t structure
igm
igm
igm
igm
-
-
information l
information l
ation nothing
cilities institut
ness different
nions
r

Observations

- Expansion improves for rigorous criteria
 - Better for SMT than local RF
- Why?

Observations

- Expansion improves for rigorous criteria
 - Better for SMT than local RF
- Why?
 - Both can introduce some good terms
 - Local RF introduces more irrelevant terms
 - SMT more constrained
 - Challenge: Balance introducing info vs noise

Comparing Question Reformulations

• "Exact Phrases in Information Retrieval for Question Answering", Stoyanchev et al, 2008

Investigates

- Role of 'exact phrases' in retrieval for QA
- Optimal query construction through document retrieval
 - From Web or AQUAINT collection
- Impact of query specificity on passage retrieval

Motivation

- Retrieval bottleneck in Question-Answering
 - Retrieval provides source for answer extraction
 - If retrieval fails to return answer-contained documents, downstream answer processing is guaranteed to fail
 - Focus on recall in information retrieval phase
 - Consistent relationship b/t quality of IR and of QA

Motivation

- Retrieval bottleneck in Question-Answering
 - Retrieval provides source for answer extraction
 - If retrieval fails to return answer-contained documents, downstream answer processing is guaranteed to fail
 - Focus on recall in information retrieval phase
 - Consistent relationship b/t quality of IR and of QA
- Main factor in retrieval: query
 - Approaches vary from simple to complex processing or expansion with external resources

Approach

• Focus on use of 'exact phrases' from a question

Approach

- Focus on use of 'exact phrases' from a question
- Analyze impact of diff't linguistic components of Q
 - Relate to answer candidate sentences

Approach

- Focus on use of 'exact phrases' from a question
- Analyze impact of diff't linguistic components of Q
 - Relate to answer candidate sentences
- Evaluate query construction for Web, Trec retrieval
 - Optimize query construction

Approach

- Focus on use of 'exact phrases' from a question
- Analyze impact of diff't linguistic components of Q
 - Relate to answer candidate sentences
- Evaluate query construction for Web, Trec retrieval
 - Optimize query construction
- Evaluate query construction for sentence retrieval
 - Analyze specificity

• Documents:

- TREC QA AQUAINT corpus
- Web

• Documents:

- TREC QA AQUAINT corpus
- Web
- Questions:
 - TREC2006, non-empty questions

• Documents:

- TREC QA AQUAINT corpus
- Web

• Questions:

- TREC2006, non-empty questions
- Gold standard:
 - NIST-provided relevant docs, answer key: 3.5 docs/Q

- Documents:
 - TREC QA AQUAINT corpus
 - Web
- Questions:
 - TREC2006, non-empty questions
- Gold standard:
 - NIST-provided relevant docs, answer key: 3.5 docs/Q
- Resources:
 - IR: Lucene; NLTK, Lingpipe: phrase, NE annotation
 - Also hand-corrected

- Exploit less-resource intensive methods
 - Chunking, NER
 - Applied only to questions, candidate sentences
 - Not applied to full collection

- Exploit less-resource intensive methods
 - Chunking, NER
 - Applied only to questions, candidate sentences
 - Not applied to full collection \rightarrow can use on Web
- Exact phrase motivation:
 - Phrases can improve retrieval
 - "In what year did the movie win academy awards?"

- Exploit less-resource intensive methods
 - Chunking, NER
 - Applied only to questions, candidate sentences
 - Not applied to full collection \rightarrow can use on Web
- Exact phrase motivation:
 - Phrases can improve retrieval
 - "In what year did the movie win academy awards?"
 - Phrase:

- Exploit less-resource intensive methods
 - Chunking, NER
 - Applied only to questions, candidate sentences
 - Not applied to full collection \rightarrow can use on Web
- Exact phrase motivation:
 - Phrases can improve retrieval
 - "In what year did the movie win academy awards?"
 - Phrase: Can rank documents higher
 - Disjunct:

- Exploit less-resource intensive methods
 - Chunking, NER
 - Applied only to questions, candidate sentences
 - Not applied to full collection \rightarrow can use on Web
- Exact phrase motivation:
 - Phrases can improve retrieval
 - "In what year did the movie win academy awards?"
 - Phrase: Can rank documents higher
 - Disjunct: Can dilute pool

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana

• NER on Question and target

• target: 1991 eruption on Mt. Pinatubo vs Nirvana

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana
 - Uses LingPipe: ORG, LOC, PER
- Phrases (NLTK)
 - NP, VP, PP

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana
 - Uses LingPipe: ORG, LOC, PER
- Phrases (NLTK)
 - NP, VP, PP
- Converted Q-phrases:
 - Heuristic paraphrases on question as declarative
 - E.g. Who was|is NOUN|PRONOUN VBD → NOUN| PRONOUN was|is VBD

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana
 - Uses LingPipe: ORG, LOC, PER
- Phrases (NLTK)
 - NP, VP, PP
- Converted Q-phrases:
 - Heuristic paraphrases on question as declarative
 - E.g. Who was|is NOUN|PRONOUN VBD → NOUN| PRONOUN was|is VBD
 - q-phrase: expected form of simple answer
 - E.g. When was Mozart born? → Mozart was born
 - How likely are we to see a q-phrase?

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana
 - Uses LingPipe: ORG, LOC, PER
- Phrases (NLTK)
 - NP, VP, PP
- Converted Q-phrases:
 - Heuristic paraphrases on question as declarative
 - E.g. Who was|is NOUN|PRONOUN VBD → NOUN|PRONOUN was| is VBD
 - q-phrase: expected form of simple answer
 - E.g. When was Mozart born? → Mozart was born
 - How likely are we to see a q-phrase? Unlikely
 - How likely is it to be right if we do see it?

- NER on Question and target
 - target: 1991 eruption on Mt. Pinatubo vs Nirvana
 - Uses LingPipe: ORG, LOC, PER
- Phrases (NLTK)
 - NP, VP, PP
- Converted Q-phrases:
 - Heuristic paraphrases on question as declarative
 - E.g. Who was|is NOUN|PRONOUN VBD → NOUN|PRONOUN was| is VBD
 - q-phrase: expected form of simple answer
 - E.g. When was Mozart born? → Mozart was born
 - How likely are we to see a q-phrase? Unlikely
 - How likely is it to be right if we do see it? Very

Baseline: words from question and target

- Baseline: words from question and target
- Experimental:
 - Words, quoted exact phrases, quoted names entities
 - Backoff: Lucene: weight based on type

- Baseline: words from question and target
- Experimental:
 - Words, quoted exact phrases, quoted names entities
 - Backoff: Lucene: weight based on type
 - Backoff: Web: 1) converted q-phrases;
 - 2) phrases; 3) w/o phrases -- until 20 retrieved
 - Combined with target in all cases

- Baseline: words from question and target
- Experimental:
 - Words, quoted exact phrases, quoted names entities
 - Backoff: Lucene: weight based on type
 - Backoff: Web: 1) converted q-phrases;
 - 2) phrases; 3) w/o phrases -- until 20 retrieved
 - Combined with target in all cases
- Max 20 documents: expensive downstream process
 - Sentences split, ranked

Query Components

Target	United Nations				
Question	What was the number of member nations of the U.N. in 2000?				
Named Entity	U.N., United Nations				
Phrases	"member nations of the U.N."				
Converted Q-phrase	"member nations of the U.N. in 2000"				
Baseline Query	was the number of member nations of the U.N. in 2000				
	United Nations				
Lucene Query with phrases	was the number of member nations of the U.N. in 2000				
and NE	"United Nations", "member nations of the u.n."				
Cascaded web query					
query1	"member nations of the U.N. in 2000" AND (United Nations)				
query2	"member nations of the u.n." AND (United Nations)				
query3	(number of member nations of the U.N. in 2000) AND (United				
	Nations)				
query4	(United Nations)				

Query Components in Supporting Sentences

	sent	w/ answer	all s	precision	
	num	proportion	num	proportion	
Named Entity	907	0.320	4873	0.122	.18
Phrases	350	0.123	1072	0.027	.34
Verbs	396	0.140	1399	0.035	.28
Q-Phrases	11	0.004	15	0.00038	.73
Words	2573	0.907	29576	0.745	.086
Total Sentences	2836		39688		

Highest precision:

Query Components in Supporting Sentences

	sent	w/ answer	all s	precision	
	num	proportion	num	proportion	
Named Entity	907	0.320	4873	0.122	.18
Phrases	350	0.123	1072	0.027	.34
Verbs	396	0.140	1399	0.035	.28
Q-Phrases	11	0.004	15	0.00038	.73
Words	2573	0.907	29576	0.745	.086
Total Sentences	2836		39688		

Highest precision: Converted q-phrase, then phrase,...

Query Components in Supporting Sentences

	sent	w/ answer	all s	precision	
	num	proportion	num	proportion	
Named Entity	907	0.320	4873	0.122	.18
Phrases	350	0.123	1072	0.027	.34
Verbs	396	0.140	1399	0.035	.28
Q-Phrases	11	0.004	15	0.00038	.73
Words	2573	0.907	29576	0.745	.086
Total Sentences	2836		39688		

Highest precision: Converted q-phrase, then phrase,... Words likely to appear, but don't discriminate

Results

- Document and sentence retrieval
- Metrics:
 - Document retrieval:
 - Average recall
 - MRR
 - Overall document recall: % of questions w/>=1 correct doc
 - Sentence retrieval
 - Sentence MRR
 - Overall sentence recall
 - Average prec of first sentence
 - # correct in top 10, top 50

Results

- Document and sentence retrieval
- Metrics:
 - Document retrieval:
 - Average recall
 - MRR
 - Overall document recall: % of questions w/>=1 correct doc

Results

	avg doc	avg doc	overall	avg sent	overall sent	avg corr sent	avg corr sent	avg corr sent
	recall	MRR	doc recall	MRR	recall	in top 1	in top 10	in top 50
		IR with Lu	cene on AQU	AINT da	taset			
baseline (words disjunction from target and question)	0.530	0.631	0.756	0.314	0.627	0.223	1.202	3.464
baseline + auto phrases	0.514	0.617	0.741	0.332	0.653	0.236	1.269	3.759
words + auto NEs & phrases	0.501	0.604	0.736	0.316	0.653	0.220	1.228	3.705
baseline + manual phrases	0.506	0.621	0.738	0.291	0.609	0.199	1.231	3.378
words + manual NEs & phrases	0.510	0.625	0.738	0.294	0.609	0.202	1.244	3.368
IR with Yahoo API on WEB								
baseline words disjunction	-	-	-	0.183	0.570	0.101	0.821	2.316
cascaded using auto phrases	-	-	-	0.220	0.604	0.140	0.956	2.725
cascaded using manual phrases	-	-	-	0.241	0.614	0.155	1.065	3.016

Discussion

- Document retrieval:
 - About half of the correct docs are retrieved, rank 1-2
- Sentence retrieval:
 - Lower, correct sentence ~ rank 3

Discussion

- Document retrieval:
 - About half of the correct docs are retrieved, rank 1-2
- Sentence retrieval:
 - Lower, correct sentence ~ rank 3
- Little difference for exact phrases in AQUAINT

Discussion

- Document retrieval:
 - About half of the correct docs are retrieved, rank 1-2
- Sentence retrieval:
 - Lower, correct sentence ~ rank 3
- Little difference for exact phrases in AQUAINT
- Web:
 - Retrieval improved by exact phrases
 - Manual more than auto (20-30%) relative
 - Precision affected by tagging errors