Answer Extraction

Ling573 NLP Systems and Applications May 16, 2013

Roadmap

- Deliverable 3 Discussion
 - What worked
- Deliverable 4
- Answer extraction:
 - Learning answer patterns
 - Answer extraction: classification and ranking
 - Noisy channel approaches

Reminder

- Rob Chambers
 - Speech Tech talk & networking event
 - This evening: 6:00pm
 - Johnson 203

- Speech Technology and Mobile Applications:
 - Speech in Windows Phone

- Document & Passage Retrieval
- What was tried:
 - Query processing:

- Question Answering:
 - Focus on question processing
- What was tried:
 - Question classification

- Question Answering:
 - Focus on question processing
- What was tried:
 - Question classification
 - Data: Li & Roth, TREC given or hand-tagged
 - Features: unigrams, POS, NER, head chunks, semantic info
 - Classifiers: MaxEnt, SVM {+ confidence}
 - Accuracies: mid-80%s

- Question Answering:
 - Focus on question processing
- What was tried:
 - Question classification
 - Data: Li & Roth, TREC given or hand-tagged
 - Features: unigrams, POS, NER, head chunks, semantic info
 - Classifiers: MaxEnt, SVM {+ confidence}
 - Accuracies: mid-80%s
 - Application:
 - Filtering: Restrict results to have compatible class
 - Boosting: Upweight compatible answers
 - Gazetteers, heuristics, NER

Question Processing

- What was tried:
- Question Reformulation:
 - Target handling:
 - Replacement of pronouns, overlapping NPs, etc
 - Per-qtype reformulations:
 - With backoff to bag-of-words
 - Inflection generation + irregular verb handling
 - Variations of exact phrases

What was tried

- Assorted clean-ups and speedups
 - Search result caching
 - Search result cleanup, dedup-ing
 - Google vs Bing
 - Code refactoring

What worked

• Target integration: most variants helped

• Query reformulation: type specific

• Qtype boosting, in some cases

• Caching for speed/analysis

Results

- Major improvements over D2 baseline
 - Most lenient results approach or exceed 0.1 MRR
 - Current best: ~0.34
 - Strict results improve, but less than lenient

- Answer extraction/refinement
 - Fine-grained passages

- Answer extraction/refinement
 - Fine-grained passages
 - Lengths not to exceed
 - 100-char,
 - 250-char

- Answer extraction/refinement
 - Fine-grained passages
 - Lengths not to exceed
 - 100-char,
 - 250-char
 - Evaluate on 2006 Devtest
 - Final held-out evaltest from 2007
 - Released later, no tuning allowed

- Any other refinements across system
 - Question processing
 - Retrieval Web or AQUAINT
 - Answer processing

• Whatever you like to improve final scores

Plug

- Error analysis
 - Look at training and devtest data
 - What causes failures?
 - Are the answers in any of the retrieval docs? Web/TREC
 - If not, why?
 - Are answers retrieved by not highly ranked?

Last Plugs

- Tonight: 6pm: JHN 102
 - Jay Waltmunson: Speech Tech and Mobile
 - UW Ling Ph.D.
 - Presentation and Networking
- Tomorrow: 3:30 PCAR 291
 - UW/MS Symposium
 - Hoifung Poon (MSR): Semantic Parsing
 - Chloe Kiddon (UW): Knowledge Extraction w/TML

Answer Extraction

Pattern-based Extraction review

Learning Answer Reranking 1

Noisy Channel Answer Extraction

Learning Answer Reranking II

Answer Selection by Pattern

- Identify question types and terms
- Filter retrieved passages, replace qterm by tag
- Try to match patterns and answer spans
- Discard duplicates and sort by pattern precision

Pattern Sets

• WHY-FAMOUS

1.0 <ANSWER> <NAME> called 1.0 laureate <ANSWER> <NAME> 1.0 by the <ANSWER> , <NAME> , 1.0 <NAME> - the <ANSWER> of 1.0 <NAME> was the <ANSWER> of

- BIRTHYEAR 1.0 <NAME> (<ANSWER> -) 0.85 <NAME> was born on <ANSWER> , 0.6 <NAME> was born in <ANSWER>
 - 0.59 <NAME> was born <ANSWER> 0.53 <ANSWER> <NAME> was born

Results

• Improves, though better with web data

TREC Corpus		
Question type	Number of	MRR on
	questions	TREC docs
BIRTHYEAR	8	0.48
INVENTOR	6	0.17
DISCOVERER	4	0.13
DEFINITION	102	0.34
WHY-FAMOUS	3	0.33
LOCATION	16	0.75

Web

Question type	Number of questions	MRR on the Web
BIRTHYEAR	8	0.69
INVENTOR	6	0.58
DISCOVERER	4	0.88
DEFINITION	102	0.39
WHY-FAMOUS	3	0.00
LOCATION	16	0.86

- Where are the Rockies?
- ..with the Rockies in the background

- Where are the Rockies?
- ..with the Rockies in the background
- Should restrict to semantic / NE type

- Where are the Rockies?
- ..with the Rockies in the background
- Should restrict to semantic / NE type
 - London, which...., lies on the River Thames
 - <QTERM> word* lies on <ANSWER>
 - Wildcards impractical

- Where are the Rockies?
- ..with the Rockies in the background
- Should restrict to semantic / NE type
 - London, which...., lies on the River Thames
 - <QTERM> word* lies on <ANSWER>
 - Wildcards impractical
- Long-distance dependencies not practical

- Where are the Rockies?
- ...with the Rockies in the background
- Should restrict to semantic / NE type
 - London, which...., lies on the River Thames
 - <QTERM> word* lies on <ANSWER>
 - Wildcards impractical
- Long-distance dependencies not practical
 - Less of an issue in Web search
 - Web highly redundant, many local dependencies
 - Many systems (LCC) use web to validate answers

- When was LBJ born?
- Tower lost to Sen. LBJ, who ran for both the...

- When was LBJ born?
- Tower lost to Sen. LBJ, who ran for both the...
- Requires information about:
 - Answer length, type; logical distance (1-2 chunks)

- When was LBJ born?
- Tower lost to Sen. LBJ, who ran for both the...
- Requires information about:
 - Answer length, type; logical distance (1-2 chunks)
- Also,
 - Can only handle single continuous qterms
 - Ignores case
 - Needs handle canonicalization, e.g of names/dates

• Fundamental problem:

- Fundamental problem:
 - What if there's no pattern??

- Fundamental problem:
 - What if there's no pattern??
 - No pattern -> No answer!!!
- More robust solution:
 - Not JUST patterns

- Fundamental problem:
 - What if there's no pattern??
 - No pattern -> No answer!!!
- More robust solution:
 - Not JUST patterns
 - Integrate with machine learning
 - MAXENT!!!
 - Re-ranking approach

Answering w/Maxent

$$P(a | \{a_1, a_2, ..., a_A\}, q) = \frac{\exp[\sum_{m=1}^{M} \lambda_m f_m(a, \{a_1, a_2, ..., a_A\}, q)]}{\sum_{a'} \exp[\sum_{m=1}^{M} \lambda_m f_m(a', \{a_1, a_2, ..., a_A\}, q)]}$$

$$\widehat{a} = \underset{a}{\operatorname{argmax}} \left[\sum_{m=1}^{n} \lambda_m f_m(a, \{a_1, a_2, \dots, a_A\}, q) \right]$$

Feature Functions

- Pattern fired:
 - Binary feature

Feature Functions

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - # times answer appears in retrieval results

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)
- Question word absent (binary):
 - No question words in answer span

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)
- Question word absent (binary):
 - No question words in answer span
- Word match:
 - Sum of ITF of words matching b/t questions & sent

Training & Testing

- Trained on NIST QA questions
 - Train: TREC 8,9;
 - Cross-validation: TREC-10
- 5000 candidate answers/question
- Positive examples:
 - NIST pattern matches
- Negative examples:
 - NIST pattern doesn't match
- Test: TREC-2003: MRR: 28.6%; 35.6% exact top 5

Noisy Channel QA

- Employed for speech, POS tagging, MT, summ, etc
- Intuition:
 - Question is a noisy representation of the answer

Noisy Channel QA

- Employed for speech, POS tagging, MT, summ, etc
- Intuition:
 - Question is a noisy representation of the answer
- Basic approach:
 - Given a corpus of (Q, S_A) pairs
 - Train $P(Q|S_A)$
 - Find sentence with answer as
 - $S_{i,Aij}$ that maximize $P(Q|S_{i,Aij})$

QA Noisy Channel

- A: Presley died of heart disease at Graceland in 1977, and..
- Q: When did Elvis Presley die?

QA Noisy Channel

- A: Presley died of heart disease at Graceland in 1977, and..
- Q: When did Elvis Presley die?
- Goal:
 - Align parts of Ans parse tree to question
 - Mark candidate answers
 - Find highest probability answer

• Alignment issue:

- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units

- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units
 - Create 'cut' through parse tree
 - Every word –or an ancestor in cut
 - Only one element on path from root to word

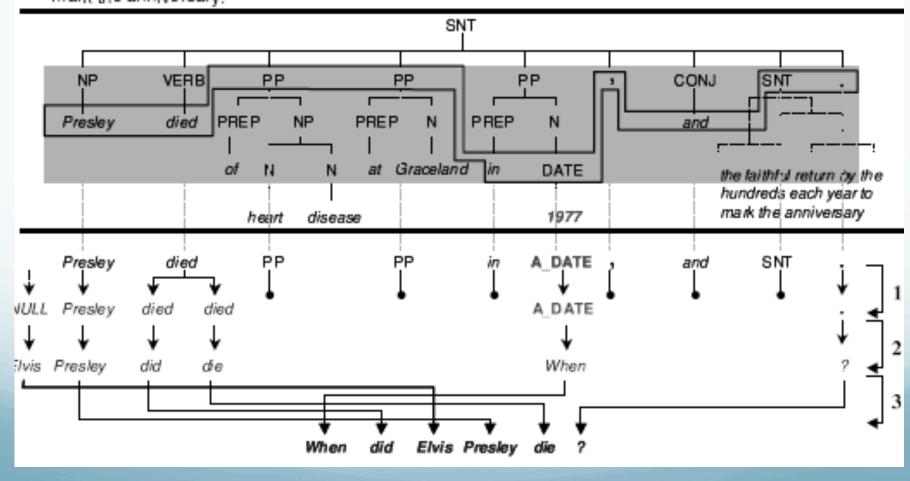
- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units
 - Create 'cut' through parse tree
 - Every word –or an ancestor in cut
 - Only one element on path from root to word

Presley died of heart disease at Graceland in 1977, and..Presley diedPPPPin DATE, and..When did Elvis Presley die?

Approach (Cont'd)

- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q

Approach (Cont'd)


- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q
- Solution: (typical MT)
 - Assign each element a fertility
 - 0 delete the word; > 1: repeat word that many times

Approach (Cont'd)

- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q
- Solution: (typical MT)
 - Assign each element a fertility
 - 0 delete the word; > 1: repeat word that many times
- Replace A words with Q words based on alignment
- Permute result to match original Question
- Everything except cut computed with OTS MT code

Schematic

Assume cut, answer guess all equally likely

Training Sample Generation

- Given question and answer sentences
- Parse answer sentence
- Create cut s.t.:
 - Words in both Q & A are preserved
 - Answer reduced to 'A_' syn/sem class label
 - Nodes with no surface children reduced to syn class
 - Keep surface form of all other nodes
- 20K TREC QA pairs; 6.5K web question pairs

- For any candidate answer sentence:
 - Do same cut process

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree
 - What's a bad candidate answer?

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree
 - What's a bad candidate answer?
 - Stopwords
 - Question words!
 - Create cuts with each answer candidate annotated
 - Select one with highest probability by model

Example Answer Cuts

- Q: When did Elvis Presley die?
- S_{A1}: Presley died A_PP PP PP, and ...
- S_{A2}: Presley died PP A_PP PP, and
- S_{A3}: Presley died PP PP in A_DATE, and ...

• Results: MRR: 24.8%; 31.2% in top 5

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'
 - Stats based:
 - No restrictions on answer type frequently 'it'

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'
 - Stats based:
 - No restrictions on answer type frequently 'it'
 - Patterns and stats:
 - 'Blatant' errors:
 - Select 'bad' strings (esp. pronouns) if fit position/pattern

Combining Units

• Linear sum of weights?

Combining Units

- Linear sum of weights?
 - Problematic:
 - Misses different strengths/weaknesses

Combining Units

- Linear sum of weights?
 - Problematic:
 - Misses different strengths/weaknesses
- Learning! (of course)
 - Maxent re-ranking
 - Linear

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - *#* times candidate answer appears (log, sqrt)

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - # times candidate answer appears (log, sqrt)
- Qtype-specific:
 - Some components better for certain types: type+mod

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - *#* times candidate answer appears (log, sqrt)
- Qtype-specific:
 - Some components better for certain types: type+mod
- Blatant 'errors': no pronouns, when NOT DoW

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)
- Patterns: Exact in top 5: 35.6% -> 43.1%
- Stats: Exact in top 5: 31.2% -> 41%
- Manual/knowledge based: 57%

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)
- Patterns: Exact in top 5: 35.6% -> 43.1%
- Stats: Exact in top 5: 31.2% -> 41%
- Manual/knowledge based: 57%
- Combined: 57%+