Answer Projection & Extraction

NLP Systems and Applications Ling573 May 15, 2014

Roadmap

- Integrating Redundancy-based Answer Extraction
 - Answer projection
 - Answer reweighting
- Answer extraction as Sequence Tagging
 - Answer candidate reranking
 - Answer span extraction

Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify 'easy' contexts for answer extraction
 - Identify statistical relations b/t answers and questions
 - Frequently effective:
 - More effective using Web as collection than TREC
- Issue:
 - How integrate with TREC QA model?
 - Requires answer string AND supporting TREC document

Answer Projection

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT
- Baseline approach: (Concordia, 2007)
 - Run query on Lucene index of TREC docs
 - Identify documents where top-ranked answer appears
 - Select one with highest retrieval score

Answer Projection

- Modifications:
 - Not just retrieval status value
 - Tf-idf of question terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
 - Approximate match of answer term
- New weighting:
 - Retrieval score x (frequency of answer + freq. of target)
- No major improvement:
 - Selects correct document for 60% of correct answers

Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
 - Phrases: All words, but group 'phrases' by shallow proc
 - Phrase-Answer: All words, Answer words as phrase

Results

Model	MRR	p@1
baseline	0.477	0.346
boost-answer-2	0.464 (-3%)	0.340 (-1%)
boost-answer-5	0.408 (-14%)	0.287 (-17%)
boost-answer-20	0.329 (-31%)	0.225 (-35%)
phrases	0.471 (-1%)	0.347 (0%)
boolean-answer	0.502 (+5%)	0.374 (+8%)
phrase-answer	0.525 (+10%	0.398 (+15%)
phrases, phrase-answer	0.517 (+8%)	0.397 (+15%)
phrases,phrase-answer,boolean-answer	0.531 (+11%	%) 0.416 (+20%)

- Boost-Answer-N hurts!
 - Topic drift to answer away from question
- Require answer as phrase, without weighting improves

Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - QA answer search too focused on query terms
 - Deep QA bias to matching NE type, syntactic class
 - Reweighting improves
- Web-boosting improves significantly: 20%

Answering by Sequence Tagging

- Answer Extraction as Sequence Tagging with Tree Edit Distance
 - Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, Peter Clark
- Intuition:
 - Exploit dependency-level correspondence b/t Q & A
 - Modeled as Tree Edit Distance over dependency parses
 - Use to rank candidate answer sentences
 - Use as features in sequence tagging for answer extr.

Intuition

- Answer extraction assumes correspondence b/t Q&A
 - Many types of correspondence:
 - Pattern-based cued on answer type
 - Noisy-channel based surface word alignment
 - Syntactic parallelism of constituent tree paths
 - Semantic role parallelism of FrameNet frame elements
- Here, correspondence via dependency parse trees
 - Similarity between question and answer candidate
 - Tree Edit Distance:
 - Total cost of best transformation from Q tree to D tree
 - Transformation sequence: "edit script"

Answer to Question Edit

Tree Edit Distance

- Representation:
 - Node: Iemma, POS, dependency relation to parent (DEP)
 - E.g., Mary → Mary/nnp/sub
- Basic edits:
 - Insert or delete:
 - Leaf node, whole subtree, other node
 - Rename:
 - node POS, DEP, or both
- Costs assigned to each operation
- Standard dynamic programming solution: least cost, opt.

Answer Candidate Ranking

- Goal:
 - Given a question and set of candidate answer sents
 - Return ranked answer list
- Approach: learn logistic regression model
- Features:
 - Tree edit features from sentence to question
 - 48 edit types: broken down by POS, DEP (similar to prior)
 - WNSearch: TED, but allows alignment/renaming of lemmas that share WordNet relations: e.g. REN_..(sport, tennis)
 - WNFeatures:
 - # of words in each WN relation b/t question & answer

Answer Sentence Ranking

- Data: TREC QA
 - Sentences w/non-stopword overlap
 - Positive instances = pattern match
- Results:
 - Competitive w/earlier systems: WN promising

System	MAP	MRR
Wang et al. (2007)	0.6029	0.6852
Heilman and Smith (2010)	0.6091	0.6917
Wang and Manning (2010)	0.5951	0.6951
this paper (48 features)	0.6319	0.7270
+WNsearch	0.6371	0.7301
+WNfeature (11 more feat.)	0.6307	0.7477

Answer Extraction

- Option 1:
 - Use tree alignment directly (like last class)
 - Answer is content word (subtree) aligned to Q-word
- Issue: Limited, not tuned for this:
 - F1: 31.4%
- Alternative:
 - Build CRF sequence tagger
 - Incorporate many features, including TED features

Answer Sequence Model

- Linear chain CRF model:
 - BIO model
 - Features over whole data
 - Example sequence tagging:

Features

- "Chunking" features:
 - Intuition: some chunks are more likely to be answers
 - E.g. "in 90 days" vs "of silly" (in "kind of silly")
 - POS, NER, DEP features of current token
 - Unigram, bigram, trigram contexts
- Fine, but obvious gap.... No relation to question!
- Question-type features:
 - Combine q-type with above features (std. types)
 - Perform question classification for what/which

Features II

- Tree Edit Features:
 - Each token associated with edit operation from trace
 - Deleted, renamed, or aligned
 - E.g. Deleted term likely to be ... answer
 - Variety of features also tied to POS/NER/DEP
- Alignment features:
 - Intuition: Answers often near aligned tokens
 - Distance to nearest aligned word (integer)
 - Also POS/NER/DEP feature of nearest aligned word

Answer Selection

- Run CRF tagging on high ranked answer sentences
 - Assume all produce answers
 - What do we do with multiple answers?
 - Weighted voting: (cf. redundancy-based approach)
 - Add partial overlap = #overlap/#words
 - What if sentence produces NO answer?
 - Insufficient prob mass for answer BI
 - "Force" candidate: outlier span
 - Threshold by multiple of Median Absolute Deviation
 - MAD = median(|x median(x)|), sequence x
 - Weight score by 0.1

Forced Vote Example

Sequence

During	what war did	Nimitz serve ?
0	O:0.921060	Conant
0	O:0.991168	had
0	O:0.997307	been
0	O:0.998570	a
0	O:0.998608	photographer
0	O:0.999005	for
0	O:0.877619	Adm
0	O:0.988293	
0	O:0.874101	Chester
0	O:0.924568	Nimitz
0	O:0.970045	during
B -ANS	O:0.464799	World
I-ANS	O:0.493715	War
I-ANS	O:0.449017	П
0	O:0.915448	

Results

- All improve over baseline alignment approach
 - Chunk/Q features ~10%; TED features + ~10%

