
Answer Extraction & 
Projection 

Ling573 
NLP Systems and Applications 

May 21, 2013 



Deliverable #4 
�  Posted 

�  Notes: 
�  Evaltest materials 

�  Corpus: Aquaint-2 
�  Should be installed soon: Pending David B. 

�  DTD change: DOCID attributed vs element 

�  Questions: TREC-2007 
�  Available tonight 

�  Answer patterns: 
�  Available next Tuesday  (avoid temptation!) 



Roadmap 
�  Answer extraction 

�  Learning Reranking I 

�  Noisy channel extraction 

�  Learning Reranking II 

�  Answer Projection 
�  Strategies for document recovery 



Integrating Patterns II 
�  Fundamental problem: 

�  What if  there’s no pattern?? 
�  No pattern -> No answer!!! 

�  More robust solution: 
�  Not JUST patterns 
�  Integrate with machine learning 

�  MAXENT!!! 

�  Re-ranking approach 



Answering w/Maxent 

P(a | {a1,a2,...aA},q) =
exp[ λm

m=1

M

∑ fm (a,{a1,a2,...aA},q)]

exp[ λm
m=1

M

∑ fm ( "a ,{a1,a2,...aA},q)]"a∑

a = argmax
a

[ λm
m=1

M

∑ fm (a,{a1,a2,...aA},q)]



Feature Functions 



Feature Functions 
�  Pattern fired: 

�  Binary feature 



Feature Functions 
�  Pattern fired: 

�  Binary feature 

�  Answer frequency/Redundancy factor: 
�  # times answer appears in retrieval results 



Feature Functions 
�  Pattern fired: 

�  Binary feature 

�  Answer frequency/Redundancy factor: 
�  # times answer appears in retrieval results 

�  Answer type match (binary) 



Feature Functions 
�  Pattern fired: 

�  Binary feature 

�  Answer frequency/Redundancy factor: 
�  # times answer appears in retrieval results 

�  Answer type match (binary) 

�  Question word absent (binary): 
�  No question words in answer span 



Feature Functions 
�  Pattern fired: 

�  Binary feature 

�  Answer frequency/Redundancy factor: 
�  # times answer appears in retrieval results 

�  Answer type match (binary) 

�  Question word absent (binary): 
�  No question words in answer span 

�  Word match: 
�  Sum of  ITF of  words matching b/t questions & sent 



Training & Testing 
�  Trained on NIST QA questions 

�  Train: TREC 8,9;  

�  Cross-validation: TREC-10 

�  5000 candidate answers/question 

�  Positive examples: 



Training & Testing 
�  Trained on NIST QA questions 

�  Train: TREC 8,9;  

�  Cross-validation: TREC-10 

�  5000 candidate answers/question 

�  Positive examples: 
�  NIST pattern matches 

�  Negative examples: 



Training & Testing 
�  Trained on NIST QA questions 

�  Train: TREC 8,9;  
�  Cross-validation: TREC-10 

�  5000 candidate answers/question 

�  Positive examples: 
�  NIST pattern matches 

�  Negative examples: 
�  NIST pattern doesn’t match 

�  Test: TREC-2003: MRR: 28.6%; 35.6% exact top 5 



Noisy Channel QA 
�  Employed for speech, POS tagging, MT, summ, etc 

�  Intuition: 
�  Question is a noisy representation of  the answer 



Noisy Channel QA 
�  Employed for speech, POS tagging, MT, summ, etc 

�  Intuition: 
�  Question is a noisy representation of  the answer 

�  Basic approach: 
�  Given a corpus of  (Q,SA) pairs 

�  Train P(Q|SA) 
�  Find sentence with answer as 

�  Si,Aij that maximize P(Q|Si,Aij) 



QA Noisy Channel 
�  A: Presley died of  heart disease at Graceland in 1977, and.. 
�  Q: When did Elvis Presley die? 



QA Noisy Channel 
�  A: Presley died of  heart disease at Graceland in 1977, and.. 
�  Q: When did Elvis Presley die? 

�  Goal: 
�  Align parts of  Ans parse tree to question  

�  Mark candidate answers 

�  Find highest probability answer 



Approach 
�  Alignment issue:  



Approach 
�  Alignment issue:  

�  Answer sentences longer than questions 

�  Minimize length gap 
�  Represent answer as mix of  words/syn/sem/NE units 



Approach 
�  Alignment issue:  

�  Answer sentences longer than questions 

�  Minimize length gap 
�  Represent answer as mix of  words/syn/sem/NE units 

�  Create ‘cut’ through parse tree 
�  Every word –or an ancestor – in cut 

�  Only one element on path from root to word  



Approach 
�  Alignment issue:  

�  Answer sentences longer than questions 
�  Minimize length gap 

�  Represent answer as mix of  words/syn/sem/NE units 

�  Create ‘cut’ through parse tree 
�  Every word –or an ancestor – in cut 
�  Only one element on path from root to word  

Presley died of  heart disease at Graceland in 1977, and.. 
Presley died         PP                   PP          in  DATE, and.. 
When did Elvis Presley die? 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 
 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 

�  Solution: (typical MT) 
�  Assign each element a fertility  

�  0 – delete the word; > 1: repeat word that many times 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 

�  Solution: (typical MT) 
�  Assign each element a fertility  

�  0 – delete the word; > 1: repeat word that many times 

�  Replace A words with Q words based on alignment 

�  Permute result to match original Question 

�  Everything except cut computed with OTS MT code 
 



Schematic 
�  Assume cut, answer guess all equally likely 



Training Sample Generation 
�  Given question and answer sentences 

�  Parse answer sentence 

�  Create cut s.t.: 
�  Words in both Q & A are preserved 
�  Answer reduced to ‘A_’ syn/sem class label 

�  Nodes with no surface children reduced to syn class 
�  Keep surface form of  all other nodes 

�  20K TREC QA pairs; 6.5K web question pairs 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 

�  What’s a bad candidate answer? 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 

�  What’s a bad candidate answer? 
�  Stopwords 

�  Question words!  

�  Create cuts with each answer candidate annotated 
�  Select one with highest probability by model 



Example Answer Cuts 
�  Q: When did Elvis Presley die? 

�  SA1: Presley died A_PP PP PP, and … 

�  SA2: Presley died PP A_PP PP, and …. 

�  SA3: Presley died PP PP in A_DATE, and … 

�  Results: MRR: 24.8%; 31.2% in top 5 



Error Analysis 
�  Component specific errors: 

�  Patterns:  
�  Some question types work better with patterns 

�  Typically specific NE categories (NAM, LOC, ORG..) 

�  Bad if  ‘vague’ 



Error Analysis 
�  Component specific errors: 

�  Patterns:  
�  Some question types work better with patterns 

�  Typically specific NE categories (NAM, LOC, ORG..) 

�  Bad if  ‘vague’ 

�  Stats based: 
�  No restrictions on answer type – frequently ‘it’ 



Error Analysis 
�  Component specific errors: 

�  Patterns:  
�  Some question types work better with patterns 

�  Typically specific NE categories (NAM, LOC, ORG..) 

�  Bad if  ‘vague’ 

�  Stats based: 
�  No restrictions on answer type – frequently ‘it’ 

�  Patterns and stats: 
�  ‘Blatant’ errors: 

�  Select ‘bad’ strings (esp. pronouns) if  fit position/pattern 



Combining Units 
�  Linear sum of  weights? 



Combining Units 
�  Linear sum of  weights? 

�  Problematic: 
�  Misses different strengths/weaknesses  



Combining Units 
�  Linear sum of  weights? 

�  Problematic: 
�  Misses different strengths/weaknesses  

�  Learning! (of  course) 
�  Maxent re-ranking 

�  Linear 



Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 



Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 

�  Redundancy-specific: 
�  # times candidate answer appears (log, sqrt) 



Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 

�  Redundancy-specific: 
�  # times candidate answer appears (log, sqrt) 

�  Qtype-specific: 
�  Some components better for certain types: type+mod 



Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 

�  Redundancy-specific: 
�  # times candidate answer appears (log, sqrt) 

�  Qtype-specific: 
�  Some components better for certain types: type+mod 

�  Blatant ‘errors’: no pronouns, when NOT DoW 



Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 



Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 

�  Combined reranking: 
�  All features (after feature selection to 31) 



Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 

�  Combined reranking: 
�  All features (after feature selection to 31) 

�  Patterns: Exact in top 5: 35.6%  -> 43.1% 

�  Stats: Exact in top 5: 31.2% -> 41% 

�  Manual/knowledge based:  57% 



Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 

�  Combined reranking: 
�  All features (after feature selection to 31) 

�  Patterns: Exact in top 5: 35.6%  -> 43.1% 

�  Stats: Exact in top 5: 31.2% -> 41% 

�  Manual/knowledge based:  57% 

�  Combined: 57%+ 



Roadmap 
�  Integrating Redundancy-based Answer Extraction 

�  Answer projection 

�  Answer reweighting 



Redundancy-Based 
Approaches & TREC 

�  Redundancy-based approaches: 
�  Exploit redundancy and large scale of  web to 

�  Identify ‘easy’ contexts for answer extraction 

�  Identify statistical relations b/t answers and questions 



Redundancy-Based 
Approaches & TREC 

�  Redundancy-based approaches: 
�  Exploit redundancy and large scale of  web to 

�  Identify ‘easy’ contexts for answer extraction 

�  Identify statistical relations b/t answers and questions 

�  Frequently effective: 
�  More effective using Web as collection than TREC 

�  Issue: 
�  How integrate with TREC QA model? 



Redundancy-Based 
Approaches & TREC 

�  Redundancy-based approaches: 
�  Exploit redundancy and large scale of  web to 

�  Identify ‘easy’ contexts for answer extraction 

�  Identify statistical relations b/t answers and questions 

�  Frequently effective: 
�  More effective using Web as collection than TREC 

�  Issue: 
�  How integrate with TREC QA model? 

�  Requires answer string AND supporting TREC document 



Answer Projection 
�  Idea:  

�  Project Web-based answer onto some TREC doc 
�  Find best supporting document in AQUAINT 



Answer Projection 
�  Idea:  

�  Project Web-based answer onto some TREC doc 
�  Find best supporting document in AQUAINT 

�  Baseline approach: (Concordia, 2007) 
�  Run query on Lucene index of  TREC docs 



Answer Projection 
�  Idea:  

�  Project Web-based answer onto some TREC doc 
�  Find best supporting document in AQUAINT 

�  Baseline approach: (Concordia, 2007) 
�  Run query on Lucene index of  TREC docs 
�  Identify documents where top-ranked answer appears 



Answer Projection 
�  Idea:  

�  Project Web-based answer onto some TREC doc 
�  Find best supporting document in AQUAINT 

�  Baseline approach: (Concordia, 2007) 
�  Run query on Lucene index of  TREC docs 
�  Identify documents where top-ranked answer appears 
�  Select one with highest retrieval score 



Answer Projection 
�  Modifications: 

�  Not just retrieval status value 



Answer Projection 
�  Modifications: 

�  Not just retrieval status value 
�  Tf-idf  of  question terms 

�  No information from answer term  
�  E.g. answer term frequency (baseline: binary) 



Answer Projection 
�  Modifications: 

�  Not just retrieval status value 
�  Tf-idf  of  question terms 

�  No information from answer term  
�  E.g. answer term frequency (baseline: binary) 

�  Approximate match of  answer term  

�  New weighting: 
�  Retrieval score x (frequency of  answer + freq. of  target) 



Answer Projection 
�  Modifications: 

�  Not just retrieval status value 
�  Tf-idf  of  question terms 
�  No information from answer term  

�  E.g. answer term frequency (baseline: binary) 

�  Approximate match of  answer term  

�  New weighting: 
�  Retrieval score x (frequency of  answer + freq. of  target) 

�  No major improvement: 
�  Selects correct document for 60% of  correct answers  



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 
�  Baseline: All words from Q & A 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 
�  Baseline: All words from Q & A 
�  Boost-Answer-N: All words, but weight Answer wds by N 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 
�  Baseline: All words from Q & A 
�  Boost-Answer-N: All words, but weight Answer wds by N 

�  Boolean-Answer: All words, but answer must appear 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 
�  Baseline: All words from Q & A 
�  Boost-Answer-N: All words, but weight Answer wds by N 

�  Boolean-Answer: All words, but answer must appear 
�  Phrases: All words, but group ‘phrases’ by shallow proc 



Answer Projection as 
Search 

�  Insight: (Mishne & De Rijk, 2005) 
�  Redundancy-based approach provides answer 

�  Why not search TREC collection after Web retrieval? 
�  Use web-based answer to improve query 

�  Alternative query formulations: Combinations 
�  Baseline: All words from Q & A 
�  Boost-Answer-N: All words, but weight Answer wds by N 

�  Boolean-Answer: All words, but answer must appear 
�  Phrases: All words, but group ‘phrases’ by shallow proc 

�  Phrase-Answer: All words, Answer words as phrase 



Results 

 

 



Results 

 

 

�  Boost-Answer-N hurts! 



Results 

 

 

�  Boost-Answer-N hurts! 
�  Topic drift to answer away from question 

�  Require answer as phrase, without weighting improves  



Web-Based Boosting 
�  Harabagiu et al 2005 

�  Create search engine queries from question 

�  Extract most redundant answers from search 
�  Augment Deep NLP approach 



Web-Based Boosting 
�  Harabagiu et al 2005 

�  Create search engine queries from question 

�  Extract most redundant answers from search 
�  Augment Deep NLP approach 

�  Increase weight on TREC candidates that match 



Web-Based Boosting 
�  Harabagiu et al 2005 

�  Create search engine queries from question 

�  Extract most redundant answers from search 
�  Augment Deep NLP approach 

�  Increase weight on TREC candidates that match 
�  Higher weight if  higher frequency 

�  Intuition: 
�  QA answer search too focused on query terms 
�  Deep QA bias to matching NE type, syntactic class 



Web-Based Boosting 
�  Create search engine queries from question 

�  Extract most redundant answers from search 
�  Augment Deep NLP approach 

�  Increase weight on TREC candidates that match 
�  Higher weight if  higher frequency 

�  Intuition: 
�  QA answer search too focused on query terms 
�  Deep QA bias to matching NE type, syntactic class 
�  Reweighting improves 

�  Web-boosting improves significantly: 20% 


