Answer Extraction & Projection

Ling573 NLP Systems and Applications May 21, 2013

Deliverable #4

- Posted
- Notes:
 - Evaltest materials
 - Corpus: Aquaint-2
 - Should be installed soon: Pending David B.
 - DTD change: DOCID attributed vs element
 - Questions: TREC-2007
 - Available tonight
 - Answer patterns:
 - Available next Tuesday (avoid temptation!)

Roadmap

- Answer extraction
 - Learning Reranking I
 - Noisy channel extraction
 - Learning Reranking II
- Answer Projection
 - Strategies for document recovery

Integrating Patterns II

- Fundamental problem:
 - What if there's no pattern??
 - No pattern -> No answer!!!
- More robust solution:
 - Not JUST patterns
 - Integrate with machine learning
 - MAXENT!!!
 - Re-ranking approach

Answering w/Maxent

$$P(a | \{a_1, a_2, ..., a_A\}, q) = \frac{\exp[\sum_{m=1}^{M} \lambda_m f_m(a, \{a_1, a_2, ..., a_A\}, q)]}{\sum_{a'} \exp[\sum_{m=1}^{M} \lambda_m f_m(a', \{a_1, a_2, ..., a_A\}, q)]}$$

$$\widehat{a} = \underset{a}{\operatorname{argmax}} \left[\sum_{m=1}^{n} \lambda_m f_m(a, \{a_1, a_2, \dots, a_A\}, q)\right]$$

- Pattern fired:
 - Binary feature

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)
- Question word absent (binary):
 - No question words in answer span

- Pattern fired:
 - Binary feature
- Answer frequency/Redundancy factor:
 - *#* times answer appears in retrieval results
- Answer type match (binary)
- Question word absent (binary):
 - No question words in answer span
- Word match:
 - Sum of ITF of words matching b/t questions & sent

Training & Testing

- Trained on NIST QA questions
 - Train: TREC 8,9;
 - Cross-validation: TREC-10
- 5000 candidate answers/question
- Positive examples:

Training & Testing

- Trained on NIST QA questions
 - Train: TREC 8,9;
 - Cross-validation: TREC-10
- 5000 candidate answers/question
- Positive examples:
 - NIST pattern matches
- Negative examples:

Training & Testing

- Trained on NIST QA questions
 - Train: TREC 8,9;
 - Cross-validation: TREC-10
- 5000 candidate answers/question
- Positive examples:
 - NIST pattern matches
- Negative examples:
 - NIST pattern doesn't match
- Test: TREC-2003: MRR: 28.6%; 35.6% exact top 5

Noisy Channel QA

- Employed for speech, POS tagging, MT, summ, etc
- Intuition:
 - Question is a noisy representation of the answer

Noisy Channel QA

- Employed for speech, POS tagging, MT, summ, etc
- Intuition:
 - Question is a noisy representation of the answer
- Basic approach:
 - Given a corpus of (Q, S_A) pairs
 - Train $P(Q|S_A)$
 - Find sentence with answer as
 - $S_{i,Aij}$ that maximize $P(Q|S_{i,Aij})$

QA Noisy Channel

- A: Presley died of heart disease at Graceland in 1977, and..
- Q: When did Elvis Presley die?

QA Noisy Channel

- A: Presley died of heart disease at Graceland in 1977, and..
- Q: When did Elvis Presley die?
- Goal:
 - Align parts of Ans parse tree to question
 - Mark candidate answers
 - Find highest probability answer

• Alignment issue:

- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units

- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units
 - Create 'cut' through parse tree
 - Every word –or an ancestor in cut
 - Only one element on path from root to word

- Alignment issue:
 - Answer sentences longer than questions
 - Minimize length gap
 - Represent answer as mix of words/syn/sem/NE units
 - Create 'cut' through parse tree
 - Every word –or an ancestor in cut
 - Only one element on path from root to word

Presley died of heart disease at Graceland in 1977, and..Presley diedPPPPin DATE, and..When did Elvis Presley die?

Approach (Cont'd)

- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q

Approach (Cont'd)

- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q
- Solution: (typical MT)
 - Assign each element a fertility
 - 0 delete the word; > 1: repeat word that many times

Approach (Cont'd)

- Assign one element in cut to be 'Answer'
- Issue: Cut STILL may not be same length as Q
- Solution: (typical MT)
 - Assign each element a fertility
 - 0 delete the word; > 1: repeat word that many times
- Replace A words with Q words based on alignment
- Permute result to match original Question
- Everything except cut computed with OTS MT code

Schematic

Assume cut, answer guess all equally likely

Training Sample Generation

- Given question and answer sentences
- Parse answer sentence
- Create cut s.t.:
 - Words in both Q & A are preserved
 - Answer reduced to 'A_' syn/sem class label
 - Nodes with no surface children reduced to syn class
 - Keep surface form of all other nodes
- 20K TREC QA pairs; 6.5K web question pairs

- For any candidate answer sentence:
 - Do same cut process

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree
 - What's a bad candidate answer?

- For any candidate answer sentence:
 - Do same cut process
 - Generate all candidate answer nodes:
 - Syntactic/Semantic nodes in tree
 - What's a bad candidate answer?
 - Stopwords
 - Question words!
 - Create cuts with each answer candidate annotated
 - Select one with highest probability by model

Example Answer Cuts

- Q: When did Elvis Presley die?
- S_{A1}: Presley died A_PP PP PP, and ...
- S_{A2}: Presley died PP A_PP PP, and
- S_{A3}: Presley died PP PP in A_DATE, and ...

• Results: MRR: 24.8%; 31.2% in top 5

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'
 - Stats based:
 - No restrictions on answer type frequently 'it'

Error Analysis

- Component specific errors:
 - Patterns:
 - Some question types work better with patterns
 - Typically specific NE categories (NAM, LOC, ORG..)
 - Bad if 'vague'
 - Stats based:
 - No restrictions on answer type frequently 'it'
 - Patterns and stats:
 - 'Blatant' errors:
 - Select 'bad' strings (esp. pronouns) if fit position/pattern

Combining Units

• Linear sum of weights?
Combining Units

- Linear sum of weights?
 - Problematic:
 - Misses different strengths/weaknesses

Combining Units

- Linear sum of weights?
 - Problematic:
 - Misses different strengths/weaknesses
- Learning! (of course)
 - Maxent re-ranking
 - Linear

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - *#* times candidate answer appears (log, sqrt)

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - # times candidate answer appears (log, sqrt)
- Qtype-specific:
 - Some components better for certain types: type+mod

- 48 in total
- Component-specific:
 - Scores, ranks from different modules
 - Patterns. Stats, IR, even QA word overlap
- Redundancy-specific:
 - *#* times candidate answer appears (log, sqrt)
- Qtype-specific:
 - Some components better for certain types: type+mod
- Blatant 'errors': no pronouns, when NOT DoW

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)
- Patterns: Exact in top 5: 35.6% -> 43.1%
- Stats: Exact in top 5: 31.2% -> 41%
- Manual/knowledge based: 57%

- Per-module reranking:
 - Use redundancy, qtype, blatant, and feature from mod
- Combined reranking:
 - All features (after feature selection to 31)
- Patterns: Exact in top 5: 35.6% -> 43.1%
- Stats: Exact in top 5: 31.2% -> 41%
- Manual/knowledge based: 57%
- Combined: 57%+

Roadmap

- Integrating Redundancy-based Answer Extraction
 - Answer projection
 - Answer reweighting

Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify 'easy' contexts for answer extraction
 - Identify statistical relations b/t answers and questions

Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify 'easy' contexts for answer extraction
 - Identify statistical relations b/t answers and questions
 - Frequently effective:
 - More effective using Web as collection than TREC
- Issue:
 - How integrate with TREC QA model?

Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify 'easy' contexts for answer extraction
 - Identify statistical relations b/t answers and questions
 - Frequently effective:
 - More effective using Web as collection than TREC
- Issue:
 - How integrate with TREC QA model?
 - Requires answer string AND supporting TREC document

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT
- Baseline approach: (Concordia, 2007)
 - Run query on Lucene index of TREC docs

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT
- Baseline approach: (Concordia, 2007)
 - Run query on Lucene index of TREC docs
 - Identify documents where top-ranked answer appears

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT
- Baseline approach: (Concordia, 2007)
 - Run query on Lucene index of TREC docs
 - Identify documents where top-ranked answer appears
 - Select one with highest retrieval score

- Modifications:
 - Not just retrieval status value

- Modifications:
 - Not just retrieval status value
 - Tf-idf of **question** terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)

- Modifications:
 - Not just retrieval status value
 - Tf-idf of **question** terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
 - Approximate match of answer term
- New weighting:
 - Retrieval score x (frequency of answer + freq. of target)

- Modifications:
 - Not just retrieval status value
 - Tf-idf of **question** terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
 - Approximate match of answer term
- New weighting:
 - Retrieval score x (frequency of answer + freq. of target)
- No major improvement:
 - Selects correct document for 60% of correct answers

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
 - Phrases: All words, but group 'phrases' by shallow proc

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection **after** Web retrieval?
 - Use web-based answer to improve query
- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
 - Phrases: All words, but group 'phrases' by shallow proc
 - Phrase-Answer: All words, Answer words as phrase

Results

Model	MRR	p@1
baseline	0.477	0.346
boost-answer-2	0.464 (-3%)	0.340 (-1%)
boost-answer-5	0.408 (-14%)	0.287 (-17%)
boost-answer-20	0.329 (-31%)	0.225 (-35%)
phrases	0.471 (-1%)	0.347~(0%)
boolean-answer	0.502 (+5%)	0.374 (+8%)
phrase-answer	0.525 (+10%)	0.398 (+15%)
phrases, phrase-answer	0.517 (+8%)	0.397 (+15%)
phrases, phrase-answer, boolean-answer	0.531 (+11%)	$0.416\ (+20\%)$

Results

Model	MRR	p@1
baseline	0.477	0.346
boost-answer-2	0.464 (-3%)	0.340 (-1%)
boost-answer-5	0.408 (-14%)	0.287 (-17%)
boost-answer-20	0.329 (-31%)	0.225 (-35%)
phrases	0.471 (-1%)	0.347~(0%)
boolean-answer	0.502 (+5%)	0.374 (+8%)
phrase-answer	0.525 (+10%)	0.398 (+15%)
phrases, phrase-answer	0.517 (+8%)	0.397 (+15%)
phrases, phrase-answer, boolean-answer	0.531 (+11%)	0.416 (+20%)

Boost-Answer-N hurts!

Results

Model	MRR	p@1
baseline	0.477	0.346
boost-answer-2	0.464 (-3%)	0.340 (-1%)
boost-answer-5	0.408 (-14%)	0.287 (-17%)
boost-answer-20	0.329 (-31%)	0.225 (-35%)
phrases	0.471 (-1%)	0.347~(0%)
boolean-answer	0.502 (+5%)	0.374 (+8%)
phrase-answer	0.525 (+10%) 0.398 (+15%)
phrases, phrase-answer	0.517 (+8%)	0.397 (+15%)
phrases, phrase-answer, boolean-answer	0.531 (+11%	(6) 0.416 (+20%)

Boost-Answer-N hurts!

- Topic drift to answer away from question
- Require answer as phrase, without weighting improves

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - QA answer search too focused on query terms
 - Deep QA bias to matching NE type, syntactic class

- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - QA answer search too focused on query terms
 - Deep QA bias to matching NE type, syntactic class
 - Reweighting improves
- Web-boosting improves significantly: 20%