Answer Extraction: Semantics

Ling573 NLP Systems and Applications May 23, 2013

- Shen and Lapata, 2007
- Intuition:
 - Surface forms obscure Q&A patterns
 - *Q: What year did the U.S. buy Alaska?*
 - S_A :...before Russia sold Alaska to the United States in 1867

- Shen and Lapata, 2007
- Intuition:
 - Surface forms obscure Q&A patterns
 - *Q: What year did the U.S. buy Alaska?*
 - S_A :...before Russia sold Alaska to the United States in 1867
 - Learn surface text patterns?

- Shen and Lapata, 2007
- Intuition:
 - Surface forms obscure Q&A patterns
 - *Q: What year did the U.S. buy Alaska?*
 - S_A :...before Russia sold Alaska to the United States in 1867
 - Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
 - Learn syntactic patterns?

- Shen and Lapata, 2007
- Intuition:
 - Surface forms obscure Q&A patterns
 - *Q: What year did the U.S. buy Alaska?*
 - S_A :...before Russia sold Alaska to the United States in 1867
 - Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
 - Learn syntactic patterns?
 - Different lexical choice, different dependency structure
 - Learn predicate-argument structure?

- Shen and Lapata, 2007
- Intuition:
 - Surface forms obscure Q&A patterns
 - *Q: What year did the U.S. buy Alaska?*
 - S_A :...before Russia sold Alaska to the United States in 1867
 - Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
 - Learn syntactic patterns?
 - Different lexical choice, different dependency structure
 - Learn predicate-argument structure?
 - Different argument structure: Agent vs recipient, etc

Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling

Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling
 - Semantic roles:
 - Buyer, Goods, Seller

Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling
 - Semantic roles:
 - Buyer, Goods, Seller
 - Examples of surface forms:
 - [Lee]Seller sold a textbook [to Abby]Buyer
 - [Kim]Seller sold [the sweater]Goods
 - [Abby]Seller sold [the car]Goods [for cash]Means.

Semantic Roles & QA

- Approach:
 - Perform semantic role labeling
 - FrameNet
 - Perform structural and semantic role matching
 - Use role matching to select answer

Semantic Roles & QA

- Approach:
 - Perform semantic role labeling
 - FrameNet
 - Perform structural and semantic role matching
 - Use role matching to select answer
- Comparison:
 - Contrast with syntax or shallow SRL approach

Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation

Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation
 - Evokation:
 - Predicates with similar semantics evoke same frame

Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation
 - Evokation:
 - Predicates with similar semantics evoke same frame
 - Frame elements:
 - Semantic roles
 - Defined per frame
 - Correspond to salient entities in the evoked situation

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell
 - Evoked by:

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles:

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles: Buyer, Seller, Goods
 - Non-core (peripheral) semantic roles:

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info
- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles: Buyer, Seller, Goods
 - Non-core (peripheral) semantic roles:
 - Means, Manner
 - Not specific to frame

Core Roles	
ATTRIBUTE	The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE	The distance by which an ITEM changes its position on the
	scale.
FINAL_STATE	A description that presents the ITEM's state after the change in
	the ATTRIBUTE's value as an independent predication.
FINAL_VALUE	The position on the scale where the ITEM ends up.
INITIAL_STATE	A description that presents the ITEM's state before the change
	in the ATTRIBUTE's value as an independent predication.
INITIAL_VALUE	The initial position on the scale from which the ITEM moves
	away.
ITEM	The entity that has a position on the scale.
VALUE_RANGE	A portion of the scale, typically identified by its end points,
	along which the values of the ATTRIBUTE fluctuate.
Some Non-Core Roles	
DURATION	The length of time over which the change takes place.
SPEED	The rate of change of the VALUE.
GROUP	The GROUP in which an ITEM changes the value of an
	ATTRIBUTE in a specified way.

Bridging Surface Gaps in QA

- Semantics: WordNet
 - Query expansion
 - Extended WordNet chains for inference
 - WordNet classes for answer filtering

Bridging Surface Gaps in QA

- Semantics: WordNet
 - Query expansion
 - Extended WordNet chains for inference
 - WordNet classes for answer filtering
- Syntax:
 - Structure matching and alignment
 - Cui et al, 2005; Aktolga et al, 2011

Semantic Roles in QA

- Narayanan and Harabagiu, 2004
 - Inference over predicate-argument structure
 - Derived from PropBank and FrameNet

Semantic Roles in QA

- Narayanan and Harabagiu, 2004
 - Inference over predicate-argument structure
 - Derived from PropBank and FrameNet
- Sun et al, 2005
 - ASSERT Shallow semantic parser based on PropBank
 - Compare pred-arg structure b/t Q & A
 - No improvement due to inadequate coverage

Semantic Roles in QA

- Narayanan and Harabagiu, 2004
 - Inference over predicate-argument structure
 - Derived from PropBank and FrameNet
- Sun et al, 2005
 - ASSERT Shallow semantic parser based on PropBank
 - Compare pred-arg structure b/t Q & A
 - No improvement due to inadequate coverage
- Kaisser et al, 2006
 - Question paraphrasing based on FrameNet
 - Reformulations sent to Google for search
 - Coverage problems due to strict matching

Approach

- Standard processing:
 - Question processing:
 - Answer type classification

Approach

- Standard processing:
 - Question processing:
 - Answer type classification
 - Similar to Li and Roth
 - Question reformulation

Approach

- Standard processing:
 - Question processing:
 - Answer type classification
 - Similar to Li and Roth
 - Question reformulation
 - Similar to AskMSR/Aranea

Approach (cont'd)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC

Approach (cont'd)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC
 - Select sentences which match pattern
 - Also with >= 1 question key word

Approach (cont'd)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC
 - Select sentences which match pattern
 - Also with >= 1 question key word
 - NE tagged:
 - If matching Answer type, keep those NPs
 - Otherwise keep all NPs

Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame

Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame
 - Set(SRA): set of semantic role assignments
 - <w,SR,s>:
 - w: frame element; SR: semantic role; s: score

Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame
 - Set(SRA): set of semantic role assignments
 - w,SR,s>:
 - w: frame element; SR: semantic role; s: score
- Perform for questions and answer candidates
 - Expected Answer Phrases (EAPs) are Qwords
 - Who, what, where
 - Must be frame elements
 - Compare resulting semantic structures
 - Select highest ranked

Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output
- Key assumption:

Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output
- Key assumption:
 - Sentences that share dependency relations will also share semantic roles, if evoked same frames

Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output
- Key assumption:
 - Sentences that share dependency relations will also share semantic roles, if evoked same frames
 - Lexical semantics argues:
 - Argument structure determined largely by word meaning

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs,

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs,

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs, select noun
- Lookup predicate in FrameNet:
 - Keep all matching frames: Why?

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs, select noun
- Lookup predicate in FrameNet:
 - Keep all matching frames: Why?
 - Avoid hard decisions

Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:

Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:
 - Beat, take away, title

Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:
 - Beat, take away, title
 - Select: Beat
- Frame lookup: Cause_harm
- Require that answer predicate 'match' question

Semantic Role Assignment

- Assume dependency path R=<r₁,r₂,...,r_L>
 - Mark each edge with direction of traversal: U/D
 - $R = \langle subj_U, obj_D \rangle$

Semantic Role Assignment

- Assume dependency path R=<r₁,r₂,...,r_L>
 - Mark each edge with direction of traversal: U/D
 - $R = \langle subj_U, obj_D \rangle$
- Assume words (or phrases) w with path to p are FE
 - Represent frame element by path

Semantic Role Assignment

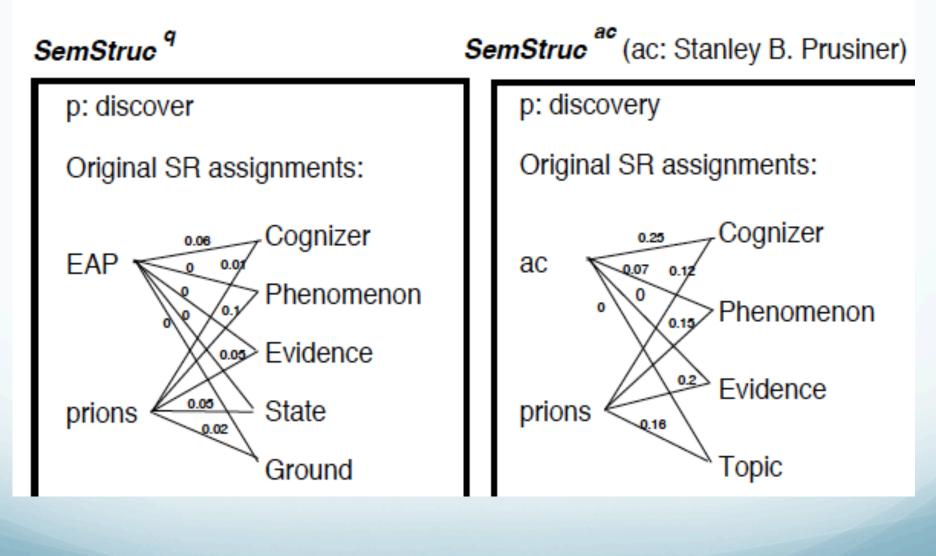
- Assume dependency path R=<r₁,r₂,...,r_L>
 - Mark each edge with direction of traversal: U/D
 - $R = \langle subj_U, obj_D \rangle$
- Assume words (or phrases) w with path to p are FE
 - Represent frame element by path
 - In FrameNet:
 - Extract all dependency paths b/t w & p
 - Label according to annotated semantic role

• M: Set of dep paths for role SR in FrameNet

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity
 - Adapt string kernel
 - Weighted sum of common subsequences

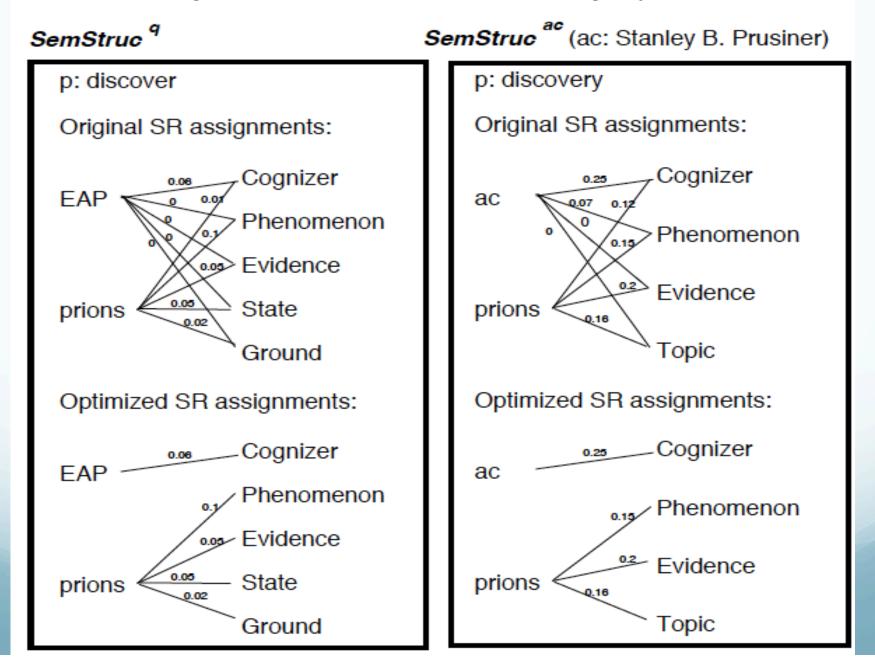

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity
 - Adapt string kernel
 - Weighted sum of common subsequences
 - Unigram and bigram sequences
 - Weight: tf-idf like: association b/t role and dep. relation

weight_{SR}(r) =
$$f_r \cdot \log(1 + \frac{N}{n_r})$$

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above

Q: Who discovered prions?

S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...


- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?
 - 'Local': could assign multiple words to the same role!
 - Need global solution:

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?
 - 'Local': could assign multiple words to the same role!
 - Need global solution:
 - Minimum weight bipartite edge cover problem
 - Assign semantic role to each frame element
 - FE can have multiple roles (soft labeling)

Q: Who discovered prions?S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...

- Measure similarity b/t question and answers
- Two factors:

- Measure similarity b/t question and answers
- Two factors:
 - Predicate matching

- Measure similarity b/t question and answers
- Two factors:
 - Predicate matching:
 - Match if evoke same frame

- Measure similarity b/t question and answers
- Two factors:
 - Predicate matching:
 - Match if evoke same frame
 - Match if evoke frames in hypernym/hyponym relation
 - Frame: inherits_from or is_inherited_by

- Measure similarity b/t question and answers
- Two factors:
 - Predicate matching:
 - Match if evoke same frame
 - Match if evoke frames in hypernym/hyponym relation
 - Frame: inherits_from or is_inherited_by
 - SR assignment match (only if preds match)
 - Sum of similarities of subgraphs
 - Subgraph is FE w and all connected SRs

$$Sim(SubG_{1}, SubG_{2}) = \sum_{\substack{nd_{1}^{SR} \in SubG_{1} \\ nd_{2}^{SR} \in SubG_{2} \\ nd_{1}^{SR} = nd_{2}^{SR}}} \frac{1}{|s(nd^{w}, nd_{1}^{SR}) - s(nd^{w}, nd_{2}^{SR})| + 1}$$

Comparisons

- Syntax only baseline:
 - Identify verbs, noun phrases, and expected answers
 - Compute dependency paths b/t phrases
 - Compare key phrase to expected answer phrase to
 - Same key phrase and answer candidate
 - Based on dynamic time warping approach

Comparisons

• Syntax only baseline:

- Identify verbs, noun phrases, and expected answers
- Compute dependency paths b/t phrases
 - Compare key phrase to expected answer phrase to
 - Same key phrase and answer candidate
 - Based on dynamic time warping approach
- Shallow semantics baseline:
 - Use Shalmaneser to parse questions and answer cand
 - Assigns semantic roles, trained on FrameNet
 - If frames match, check phrases with same role as EAP
 - Rank by word overlap

Evaluation

- Q1: How does incompleteness of FrameNet affect utility for QA systems?
 - Are there questions for which there is no frame or no annotated sentence data?

Evaluation

- Q1: How does incompleteness of FrameNet affect utility for QA systems?
 - Are there questions for which there is no frame or no annotated sentence data?
- Q2: Are questions amenable to FrameNet analysis?
 - Do questions and their answers evoke the same frame? The same roles?

FrameNet Applicability

• Analysis:

Data	Total	NoFrame		NoAnnot		NoMatch		Rest	
TREC02	444	87	(19.6)	29	(6.5)	176	(39.6)	152	(34.2)
TREC03	380	55	(14.5)	30	(7.9)	183	(48.2)	112	(29.5)
TREC04	203	47	(23.1)	14	(6.9)	67	(33.0)	75	(36.9)
TREC05	352	70	(19.9)	23	(6.5)	145	(41.2)	114	(32.4)

• NoFrame: No frame for predicate: sponsor, sink

FrameNet Applicability

• Analysis:

Data	Total	N	oFrame	No	Annot	No	Match		Rest
TREC02	444	87	(19.6)	29	(6.5)	176	(39.6)	152	(34.2)
TREC03	380	55	(14.5)	30	(7.9)	183	(48.2)	112	(29.5)
TREC04	203	47	(23.1)	14	(6.9)	67	(33.0)	75	(36.9)
TREC05	352	70	(19.9)	23	(6.5)	145	(41.2)	114	(32.4)

• NoFrame: No frame for predicate: sponsor, sink

NoAnnot: No sentences annotated for pred: win, hit

FrameNet Applicability

• Analysis:

Data	Total	N	oFrame	No	Annot	No	Match		Rest
TREC02	444	87	(19.6)	29	(6.5)	176	(39.6)	152	(34.2)
TREC03	380	55	(14.5)	30	(7.9)	183	(48.2)	112	(29.5)
TREC04	203	47	(23.1)	14	(6.9)	67	(33.0)	75	(36.9)
TREC05	352	70	(19.9)	23	(6.5)	145	(41.2)	114	(32.4)

- NoFrame: No frame for predicate: sponsor, sink
- NoAnnot: No sentences annotated for pred: win, hit
- NoMatch: Frame mismatch b/t Q&A

FrameNet Utility

• Analysis on Q&A pairs with frames, annotation, match

Model	TREC02	TREC03	TREC04	TREC05
SemParse	13.16	8.92	17.33	13.16
SynMatch	35.53*	33.04*	40.00*	36.84*
SemMatch	53.29*†	49 .11* [†]	54.67*†	59.65 *†

• Good results, but

FrameNet Utility

• Analysis on Q&A pairs with frames, annotation, match

Model	TREC02	TREC03	TREC04	TREC05
SemParse	13.16	8.92	17.33	13.16
SynMatch	35.53*	33.04*	40.00*	36.84*
SemMatch	53.29*†	49 .11* [†]	54.67*†	59.65 *†

- Good results, but
 - Over-optimistic
 - SemParse still has coverage problems

FrameNet Utility (II)

- Q3: Does semantic soft matching improve?
- Approach:
 - Use FrameNet semantic match

FrameNet Utility (II)

- Q3: Does semantic soft matching improve?
- Approach:
 - Use FrameNet semantic match
 - If no answer found

FrameNet Utility (II)

- Q3: Does semantic soft matching improve?
- Approach:
 - Use FrameNet semantic match
 - If no answer found, back off to syntax based approach
- Soft match best: semantic parsing too brittle, Q

Model	TREC02	TREC03	TREC04	TREC05
SynMatch	32.88*	30.70*	35.95*	34.38*
+SemParse	25.23	23.68	28.57	26.70
+SemMatch	38.96*†	35.53*†	42.36*†	41.76*†

Summary

- FrameNet and QA:
 - FrameNet still limited (coverage/annotations)
 - Bigger problem is lack of alignment b/t Q & A frames
- Even if limited,
 - Substantially improves where applicable
 - Useful in conjunction with other QA strategies
 - Soft role assignment, matching key to effectiveness

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action
 - Enables generalization over surface order of arguments
 - John_{AGENT} broke the window_{THEME}

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action
 - Enables generalization over surface order of arguments
 - John_{AGENT} broke the window_{THEME}
 - The rock_{INSTRUMENT} broke the window_{THEME}

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action
 - Enables generalization over surface order of arguments
 - John_{AGENT} broke the window_{THEME}
 - The rock_{INSTRUMENT} broke the window_{THEME}
 - The window_{THEME} was broken by John_{AGENT}

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
 - Doris_{AGENT} gave the book_{THEME} to Cary_{GOAL}

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
 - Doris_{AGENT} gave the book_{THEME} to Cary_{GOAL}
 - Doris_{AGENT} gave Cary_{GOAL} the book_{THEME}

- Thematic grid, θ -grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME
- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
 - Doris_{AGENT} gave the book_{THEME} to Cary_{GOAL}
 - Doris_{AGENT} gave Cary_{GOAL} the book_{THEME}
 - Group verbs into classes based on shared patterns

Canonical Roles

Thematic Role	Example
AGENT	The waiter spilled the soup.
EXPERIENCER	John has a headache.
FORCE	The wind blows debris from the mall into our yards.
THEME	Only after Benjamin Franklin broke the ice
RESULT	The French government has built a regulation-size baseball
	diamond
CONTENT	Mona asked "You met Mary Ann at a supermarket?"
INSTRUMENT	He turned to poaching catfish, stunning them with a shocking
	device
BENEFICIARY	Whenever Ann Callahan makes hotel reservations for her boss
SOURCE	I flew in <i>from Boston</i> .
GOAL	I drove to Portland.

• Hard to produce

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E,g, INSTRUMENTS can be subject or not

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E,g, INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E,g, INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....
- Strategies:
 - Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
 - Defined heuristically: PropBank

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E,g, INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....
- Strategies:
 - Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
 - Defined heuristically: PropBank
 - Define roles specific to verbs/nouns: FrameNet

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreer

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreer
 - Arg1: Proposition

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreer
 - Arg1: Proposition
 - Arg2: Other entity agreeing

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreer
 - Arg1: Proposition
 - Arg2: Other entity agreeing
 - Ex1: [Arg0 The group] agreed [Arg1 it wouldn't make an offer]