Beyond TREC-QA

Ling573
NLP Systems and Applications
May 28, 2013

Roadmap

- Beyond TREC-style Question Answering
 - Watson and Jeopardy!
 - Web-scale relation extraction
 - Distant supervision

Watson & Jeopardy!™ vs QA

- QA vs Jeopardy!
- TREC QA systems on Jeopardy! task
- Design strategies
- Watson components
- DeepQA on TREC

Both:

- Both:
 - Open domain 'questions'; factoids
- TREC QA:

- Both:
 - Open domain 'questions'; factoids
- TREC QA:
 - 'Small' fixed doc set evidence, can access Web
 - No timing, no penalty for guessing wrong, no betting

- Both:
 - Open domain 'questions'; factoids
- TREC QA:
 - 'Small' fixed doc set evidence, can access Web
 - No timing, no penalty for guessing wrong, no betting
- Jeopardy!:
 - Timing, confidence key; betting
 - Board; Known question categories; Clues & puzzles
 - No live Web access, no fixed doc set

TREC QA Systems for Jeopardy!

TREC QA somewhat similar to Jeopardy!

TREC QA Systems for Jeopardy!

- TREC QA somewhat similar to Jeopardy!
- Possible approach: extend existing QA systems
 - IBM's PIQUANT:
 - Closed document set QA, in top 3 at TREC: 30+%
 - CMU's OpenEphyra:
 - Web evidence-based system: 45% on TREC2002

TREC QA Systems for Jeopardy!

- TREC QA somewhat similar to Jeopardy!
- Possible approach: extend existing QA systems
 - IBM's PIQUANT:
 - Closed document set QA, in top 3 at TREC: 30+%
 - CMU's OpenEphyra:
 - Web evidence-based system: 45% on TREC2002
- Applied to 500 random Jeopardy questions
 - Both systems under 15% overall
 - PIQUANT ~45% when 'highly confident'

- Massive parallelism
 - Consider multiple paths and hypotheses

- Massive parallelism
 - Consider multiple paths and hypotheses
- Combine experts
 - Integrate diverse analysis components

- Massive parallelism
 - Consider multiple paths and hypotheses
- Combine experts
 - Integrate diverse analysis components
- Confidence estimation:
 - All components estimate confidence; learn to combine

- Massive parallelism
 - Consider multiple paths and hypotheses
- Combine experts
 - Integrate diverse analysis components
- Confidence estimation:
 - All components estimate confidence; learn to combine
- Integrate shallow/deep processing approaches

Watson Components: Content

- Content acquisition:
 - Corpora: encyclopedias, news articles, thesauri, etc
 - Automatic corpus expansion via web search
 - Knowledge bases: DBs, dbPedia, Yago, WordNet, etc

Watson Components: Question Analysis

- Uses
 - "Shallow & deep parsing, logical forms, semantic role labels, coreference, relations, named entities, etc"

Watson Components: Question Analysis

- Uses
 - "Shallow & deep parsing, logical forms, semantic role labels, coreference, relations, named entities, etc"
- Question analysis: question types, components
- Focus & LAT detection:
 - Finds lexical answer type and part of clue to replace with answer

Watson Components: Question Analysis

- Uses
 - "Shallow & deep parsing, logical forms, semantic role labels, coreference, relations, named entities, etc"
- Question analysis: question types, components
- Focus & LAT detection:
 - Finds lexical answer type and part of clue to replace with answer
- Relation detection: Syntactic or semantic rel's in Q
- Decomposition: Breaks up complex Qs to solve

Watson Components: Hypothesis Generation

 Applies question analysis results to support search in resources and selection of answer candidates

Watson Components: Hypothesis Generation

- Applies question analysis results to support search in resources and selection of answer candidates
- 'Primary search':
 - Recall-oriented search returning 250 candidates
 - Document- & passage-retrieval as well as KB search

Watson Components: Hypothesis Generation

- Applies question analysis results to support search in resources and selection of answer candidates
- 'Primary search':
 - Recall-oriented search returning 250 candidates
 - Document- & passage-retrieval as well as KB search
- Candidate answer generation:
 - Recall-oriented extracted of specific answer strings
 - E.g. NER-based extraction from passages

Watson Components: Filtering & Scoring

- Previous stages generated 100s of candidates
 - Need to filter and rank

Watson Components: Filtering & Scoring

- Previous stages generated 100s of candidates
 - Need to filter and rank
- Soft filtering:
 - Lower resource techniques reduce candidates to ~100

Watson Components: Filtering & Scoring

- Previous stages generated 100s of candidates
 - Need to filter and rank
- Soft filtering:
 - Lower resource techniques reduce candidates to ~100
- Hypothesis & Evidence scoring:
 - Find more evidence to support candidate
 - E.g. by passage retrieval augmenting query with candidate
 - Many scoring fns and features, including IDF-weighted overlap, sequence matching, logical form alignment, temporal and spatial reasoning, etc, etc..

Watson Components: Answer Merging and Ranking

- Merging:
 - Uses matching, normalization, and coreference to integrate different forms of same concept
 - e.g., 'President Lincoln' with 'Honest Abe'

Watson Components: Answer Merging and Ranking

- Merging:
 - Uses matching, normalization, and coreference to integrate different forms of same concept
 - e.g., 'President Lincoln' with 'Honest Abe'
- Ranking and Confidence estimation:
 - Trained on large sets of questions and answers
 - Metalearner built over intermediate domain learners
 - Models built for different question classes

Watson Components: Answer Merging and Ranking

- Merging:
 - Uses matching, normalization, and coreference to integrate different forms of same concept
 - e.g., 'President Lincoln' with 'Honest Abe'
- Ranking and Confidence estimation:
 - Trained on large sets of questions and answers
 - Metalearner built over intermediate domain learners
 - Models built for different question classes
- Also tuned for speed, trained for strategy, betting

Retuning to TREC QA

DeepQA system augmented with TREC-specific:

Retuning to TREC QA

- DeepQA system augmented with TREC-specific:
 - Question analysis and classification
 - Answer extraction
 - Used PIQUANT and OpenEphyra answer typing

Retuning to TREC QA

- DeepQA system augmented with TREC-specific:
 - Question analysis and classification
 - Answer extraction
 - Used PIQUANT and OpenEphyra answer typing
 - 2008: Unadapted: 35% -> Adapted: 60%
 - 2010: Unadapted: 51% -> Adapted: 67%

Summary

- Many components, analyses similar to TREC QA
 - Question analysis → Passage Retrieval → Answer extr.
 - May differ in detail, e.g. complex puzzle questions
- Some additional:
 - Intensive confidence scoring, strategizing, betting
- Some interesting assets:
 - Lots of QA training data, sparring matches
- Interesting approaches:
 - Parallel mixtures of experts; breadth, depth of NLP

Distant Supervision for Web-scale Relation Extraction

- Distant supervision for relation extraction without labeled data
 - Mintz et al, 2009

Distant Supervision for Web-scale Relation Extraction

- Distant supervision for relation extraction without labeled data
 - Mintz et al, 2009
- Approach:
 - Exploit large-scale:
 - Relation database of relation instance examples
 - Unstructured text corpus with entity occurrences
 - To learn new relation patterns for extraction

Motivation

Goal: Large-scale mining of relations from text

Motivation

- Goal: Large-scale mining of relations from text
 - Example: Knowledge Base Population task
 - Fill in missing relations in a database from text
 - Born_in, Film_director, band_origin
- Challenges:

Motivation

- Goal: Large-scale mining of relations from text
 - Example: Knowledge Base Population task
 - Fill in missing relations in a database from text
 - Born_in, Film_director, band_origin
- Challenges:
 - Many, many relations
 - Many, many ways to express relations

Motivation

- Goal: Large-scale mining of relations from text
 - Example: Knowledge Base Population task
 - Fill in missing relations in a database from text
 - Born_in, Film_director, band_origin
- Challenges:
 - Many, many relations
 - Many, many ways to express relations
 - How can we find them?

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues:

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues: Few relations, examples, documents

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues: Few relations, examples, documents
 - Expensive labeling, domain specificity
- Unsupervised clustering:
 - Issues:

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues: Few relations, examples, documents
 - Expensive labeling, domain specificity
- Unsupervised clustering:
 - Issues: May not extract desired relations
- Bootstrapping: e.g. Ravichandran & Hovy
 - Use small number of seed examples to learn patterns
 - Issues

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues: Few relations, examples, documents
 - Expensive labeling, domain specificity
- Unsupervised clustering:
 - Issues: May not extract desired relations
- Bootstrapping: e.g. Ravichandran & Hovy
 - Use small number of seed examples to learn patterns
 - Issues: Lexical/POS patterns; local patterns

- Supervised learning:
 - E.g. ACE: 16.7K relation instances; 30 total relations
 - Issues: Few relations, examples, documents
 - Expensive labeling, domain specificity
- Unsupervised clustering:
 - Issues: May not extract desired relations
- Bootstrapping: e.g. Ravichandran & Hovy
 - Use small number of seed examples to learn patterns
 - Issues: Lexical/POS patterns; local patterns
 - Can't handle long-distance

- Distant Supervision:
 - Supervision (examples) via large semantic database

- Distant Supervision:
 - Supervision (examples) via large semantic database
- Key intuition:
 - If a sentence has two entities from a Freebase relation,
 - they should express that relation in the sentence

- Distant Supervision:
 - Supervision (examples) via large semantic database
- Key intuition:
 - If a sentence has two entities from a Freebase relation,
 - they should express that relation in the sentence
- Secondary intuition:
 - Many witness sentences expressing relation
 - Can jointly contribute to features in relation classifier
- Advantages:

- Distant Supervision:
 - Supervision (examples) via large semantic database
- Key intuition:
 - If a sentence has two entities from a Freebase relation,
 - they should express that relation in the sentence
- Secondary intuition:
 - Many witness sentences expressing relation
 - Can jointly contribute to features in relation classifier
- Advantages: Avoids overfitting, uses named relations

- Freely available DB of structured semantic data
 - Compiled from online sources
 - E.g. Wikipedia infoboxes, NNDB, SEC, manual entry

- Freely available DB of structured semantic data
 - Compiled from online sources
 - E.g. Wikipedia infoboxes, NNDB, SEC, manual entry
- Unit: Relation
 - Binary relations between ordered entities
 - E.g. person-nationality: <John Steinbeck, US>

- Freely available DB of structured semantic data
 - Compiled from online sources
 - E.g. Wikipedia infoboxes, NNDB, SEC, manual entry
- Unit: Relation
 - Binary relations between ordered entities
 - E.g. person-nationality: <John Steinbeck, US>
- Full DB: 116M instances, 7.3K rels, 9M entities

- Freely available DB of structured semantic data
 - Compiled from online sources
 - E.g. Wikipedia infoboxes, NNDB, SEC, manual entry
- Unit: Relation
 - Binary relations between ordered entities
 - E.g. person-nationality: <John Steinbeck, US>
- Full DB: 116M instances, 7.3K rels, 9M entities
- Largest relations: 1.8M inst., 102 rels, 940K entities

Relation name	Size	Example	
/people/person/nationality	281,107	John Dugard, South Africa	
/location/location/contains	253,223	Belgium, Nijlen	
/people/person/profession	208,888	Dusa McDuff, Mathematician	
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield	
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican	
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC	
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order	
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir	
/film/film/language	31,103	Enter the Phoenix, Cantonese	
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae	
/film/film/country	27,217	Turtle Diary, United States	
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause	
/film/director/film	23,539	Michael Mann, Collateral	
/film/producer/film	22,079	Diane Eskenazi, Aladdin	

- Training:
 - Identify entities in sentences, using NER

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:
 - Identify entities with NER
 - If find two entities in sentence together

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:
 - Identify entities with NER
 - If find two entities in sentence together
 - Add features to vector

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:
 - Identify entities with NER
 - If find two entities in sentence together
 - Add features to vector
 - Predict based on features from all sents
 - Pair appears 10x, 3 features

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:
 - Identify entities with NER
 - If find two entities in sentence together
 - Add features to vector
 - Predict based on features from all sents
 - Pair appears 10x, 3 features → 30 features

Exploiting strong info:

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>
 - [Spielberg]'s film, [Saving Private Ryan] is loosely based...

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>
 - [Spielberg]'s film, [Saving Private Ryan] is loosely based...
 - Director? Writer? Producer?
 - Award winning [Saving Private Ryan], directed by [Spielberg]

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>
 - [Spielberg]'s film, [Saving Private Ryan] is loosely based...
 - Director? Writer? Producer?
 - Award winning [Saving Private Ryan], directed by [Spielberg]
 - CEO? (Film-)Director?
 - If see both

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia, Richmond>, <France, Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>
 - [Spielberg]'s film, [Saving Private Ryan] is loosely based...
 - Director? Writer? Producer?
 - Award winning [Saving Private Ryan], directed by [Spielberg]
 - CEO? (Film-)Director?
 - If see both → Film-director

Lexical features: Conjuncts of

- Lexical features: Conjuncts of
 - Astronomer Edwin Hubble was born in Marshfield, MO

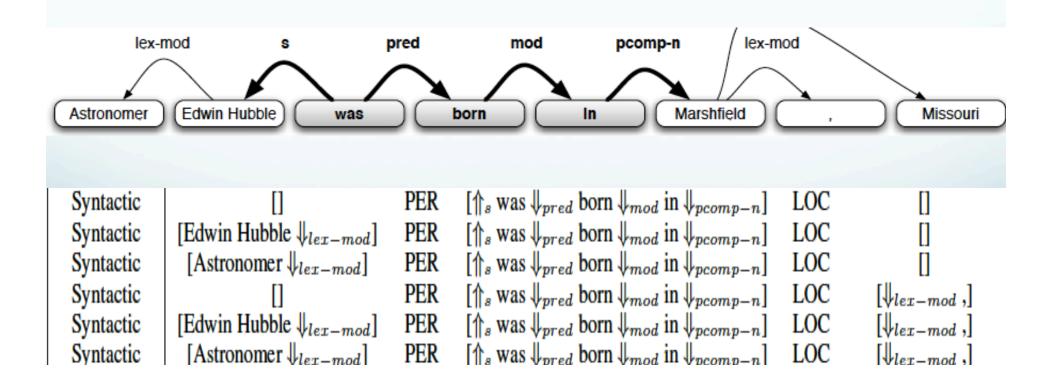
- Lexical features: Conjuncts of
 - Sequence of words between entities
 - POS tags of sequence between entities
 - Flag for entity order
 - k words+POS before 1st entity
 - k words+POS after 2nd entity
 - Astronomer Edwin Hubble was born in Marshfield, MO

- Lexical features: Conjuncts of
 - Sequence of words between entities
 - POS tags of sequence between entities
 - Flag for entity order
 - k words+POS before 1st entity
 - k words+POS after 2nd entity
 - Astronomer Edwin Hubble was born in Marshfield, MO

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	[]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]

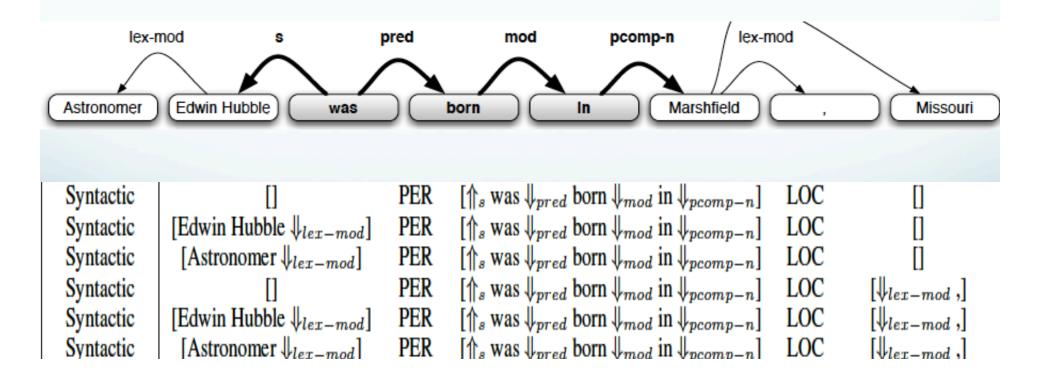
Syntactic features: Conjuncts of:

Feature Extraction II



Feature Extraction II

- Syntactic features: Conjuncts of:
 - Dependency path between entities, parsed by Minipar
 - Chunks, dependencies, and directions
 - Window node not on dependency path



High Weight Features

author_editor	LEX∽	ORG	s novel	PER
	SYN	PER	\uparrow_{nn} series \downarrow_{qen}	PER
founders	LEX	ORG	co - founder	PER
	SYN	ORG	\uparrow_{nn} owner \downarrow_{person}	PER
place_founded	LEX∽	ORG	- based	LOC
	SYN	ORG	\uparrow_s founded \downarrow_{mod} in \downarrow_{pcn}	LOC

High Weight Features

Features highly specific: Problem?

author_editor	LEX∽	ORG	s novel	PER
	SYN	PER	\uparrow_{nn} series \downarrow_{qen}	PER
founders	LEX	ORG	co - founder	PER
	SYN	ORG	\uparrow_{nn} owner \downarrow_{person}	PER
place_founded	LEX.	ORG	- based	LOC
	SYN	ORG	\uparrow_s founded \downarrow_{mod} in \downarrow_{pcn}	LOC

High Weight Features

- Features highly specific: Problem?
 - Not really, attested in large text corpus

LEX∽	ORG	s novel	PER
SYN	PER	\uparrow_{nn} series \downarrow_{qen}	PER
LEX	ORG	co - founder	PER
SYN	ORG	\uparrow_{nn} owner \downarrow_{person}	PER
LEX∽	ORG	- based	LOC
SYN	ORG	\uparrow_s founded \downarrow_{mod} in \downarrow_{pcn}	LOC
	SYN LEX SYN LEX	SYN PER LEX ORG SYN ORG LEX ORG	LEX \sim ORGs novelSYNPER \uparrow_{nn} series \downarrow_{gen} LEXORGco - founderSYNORG \uparrow_{nn} owner \downarrow_{person} LEX \sim ORG- based

Train on subset of data, test on held-out portion

- Train on subset of data, test on held-out portion
- Train on all relations, using part of corpus
 - Test on new relations extracted from Wikipedia text
 - How evaluate newly extracted relations?

- Train on subset of data, test on held-out portion
- Train on all relations, using part of corpus
 - Test on new relations extracted from Wikipedia text
 - How evaluate newly extracted relations?
 - Send to human assessors
 - Issue:

- Train on subset of data, test on held-out portion
- Train on all relations, using part of corpus
 - Test on new relations extracted from Wikipedia text
 - How evaluate newly extracted relations?
 - Send to human assessors
 - Issue: 100s or 1000s of each type of relation

- Train on subset of data, test on held-out portion
- Train on all relations, using part of corpus
 - Test on new relations extracted from Wikipedia text
 - How evaluate newly extracted relations?
 - Send to human assessors
 - Issue: 100s or 1000s of each type of relation
 - Crowdsource: Send to Amazon Mechanical Turk

Results

- Overall: on held-out set
 - Best precision combines lexical, syntactic
 - Significant skew in identified relations
 - @100,000: 60% location-contains, 13% person-birthplace

Results

- Overall: on held-out set
 - Best precision combines lexical, syntactic
 - Significant skew in identified relations
 - @100,000: 60% location-contains, 13% person-birthplace
 - Syntactic features helpful in ambiguous, long-distance
 - E.g.
 - Back Street is a 1932 film made by Universal Pictures, directed by John M. Stahl,...

Human-Scored Results

Relation name		100 instances			1000 instances		
Kelation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Human-Scored Results

• @ Recall 100: Combined lexical, syntactic best

Relation name		100 instances			1000 instances		
		Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Human-Scored Results

- @ Recall 100: Combined lexical, syntactic best
 - @1000: mixed

Relation name		100 instances			1000 instances		
Kelation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Distant Supervision

- Uses large databased as source of true relations
- Exploits co-occurring entities in large text collection
- Scale of corpus, richer syntactic features
 - Overcome limitations of earlier bootstrap approaches
- Yields reasonably good precision
 - Drops somewhat with recall
 - Skewed coverage of categories