Beyond TREC-QA II

Ling573 NLP Systems and Applications May 29, 2014

Roadmap

- Beyond TREC Question Answering
 - Distant supervision for web-scale relation extraction
 - Machine reading: Question Generation

New Strategy

- Distant Supervision:
 - Supervision (examples) via large semantic database
- Key intuition:
 - If a sentence has two entities from a Freebase relation,
 - they should express that relation in the sentence
- Secondary intuition:
 - Many witness sentences expressing relation
 - Can jointly contribute to features in relation classifier
- Advantages: Avoids overfitting, uses named relations

Freebase

- Freely available DB of structured semantic data
 - Compiled from online sources
 - E.g. Wikipedia infoboxes, NNDB, SEC, manual entry
- Unit: Relation
 - Binary relations between ordered entities
 - E.g. person-nationality: <John Steinbeck, US>
- Full DB: 116M instances, 7.3K rels, 9M entities*
- Largest relations: 1.8M inst., 102 rels, 940K entities*

As of paper publication (2009): currenty 43M topics; 2.5B 'facts' Largest 14M

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin

Basic Method

- Training:
 - Identify entities in sentences, using NER
 - If find two entities participating in Freebase relation,
 - Extract features, add to relation vector
 - Combine features by rel'n across sent. in multiclass LR
- Testing:
 - Identify entities with NER
 - If find two entities in sentence together
 - Add features to vector
 - Predict based on features from all sents
 - Pair appears 10x, 3 features → 30 features

Examples

- Exploiting strong info: Location-contains:
 - Freebase: <Virginia,Richmond>,<France,Nantes>
 - Training sentences: 'Richmond, the capital of Virginia'
 - 'Edict of Nantes helped the Protestants of France'
 - Testing: 'Vienna, the capital of Austria'
- Combining evidence: <Spielberg, Saving Private Ryan>
 - [Spielberg]'s film, [Saving Private Ryan] is loosely based...
 - Director? Writer? Producer?
 - Award winning [Saving Private Ryan], directed by [Spielberg]
 - CEO? (Film-)Director?
 - If see both → Film-director

Feature Extraction

- Lexical features: Conjuncts of
 - Sequence of words between entities
 - POS tags of sequence between entities
 - Flag for entity order
 - k words+POS before 1st entity
 - k words+POS after 2nd entity
 - Astronomer Edwin Hubble was born in Marshfield, MO

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	[]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]

Feature Extraction II

- Syntactic features: Conjuncts of:
 - Dependency path between entities, parsed by Minipar
 - Chunks, dependencies, and directions
 - Window node not on dependency path

High Weight Features

- Features highly specific: Problem?
 - Not really, attested in large text corpus

author_editor	LEX∽	ORG	s novel	PER
	SYN	PER	\uparrow_{nn} series \downarrow_{qen}	PER
founders	LEX	ORG	co - founder	PER
	SYN	ORG	\uparrow_{nn} owner \downarrow_{person}	PER
place_founded	LEX∽	ORG	- based	LOC
	SYN	ORG	\uparrow_s founded \downarrow_{mod} in \downarrow_{pcn}	LOC

Evaluation Paradigm

- Train on subset of data, test on held-out portion
- Train on all relations, using part of corpus
 - Test on new relations extracted from Wikipedia text
 - How evaluate newly extracted relations?
 - Send to human assessors
 - Issue: 100s or 1000s of each type of relation
 - Crowdsource: Send to Amazon Mechanical Turk

Results

- Overall: on held-out set
 - Best precision combines lexical, syntactic
 - Significant skew in identified relations
 - @100,000: 60% location-contains, 13% person-birthplace
 - Syntactic features helpful in ambiguous, long-distance
 - E.g.
 - Back Street is a 1932 film made by Universal Pictures, directed by John M. Stahl,...

Human-Scored Results

- @ Recall 100: Combined lexical, syntactic best
 - @1000: mixed

Relation name		100 instances			1000 instances		
Relation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Distant Supervision

- Uses large database as source of true relations
- Exploits co-occurring entities in large text collection
- Scale of corpus, richer syntactic features
 - Overcome limitations of earlier bootstrap approaches
- Yields reasonably good precision
 - Drops somewhat with recall
 - Skewed coverage of categories

Roadmap

- Beyond TREC Question Answering
 - Distant supervision for web-scale relation extraction
 - Machine reading: Question Generation

Question Generation

- Mind the Gap: Learning to Choose Gaps for Question Generation
 - Becker, Basu, Vanderwende '12
 - Other side of question-answering
 - Related to "machine reading"
 - Generate questions based on arbitrary text

Motivation

- Why generate questions?
 - Aside from playing Jeopardy!, of course
- Educational (self-)assessment
 - Testing aids in retention of studied concepts
 - Reading, review relatively passive
 - Active retrieval, recall of concepts more effective
 - Shifts to less-structured learning settings
 - Online study, reading, MOOCs
 - Assessment difficult > automatically generate

Generating Questions

- Prior work:
 - Shared task on question generation
 - Focused on:
 - Grammatical question generation
 - Creating distractors for multiple choice questions
- Here: Generating Good Questions
 - Given a text, decompose into two steps:
 - What sentences form the basis of good questions?
 - What aspects of these sentences should we focus on?

Overview

- Goal: Generate good gap-fill questions
 - Allow focus on content vs form
 - Later extend to wh-questions or multiple choice
- Approach
 - Summarization-based sentence selection
 - Machine learning-based gap selection
 - Training data creation on Wikipedia data
 - Preview: 83% true pos vs 19% false positives

Sentence Selection

- Intuition:
 - When studying a new subject, focus on main concepts
 - Nitty-gritty details later
- Insight: Similar to existing NLP task →
 - Summarization: Pick out key content first
- Exploit simple summarization approach
 - Based on SumBasic
 - Best sentences: most representative of article
 - Contain most frequent (non-stop) words in article

Generate

- What's a good gap?
 - Any word position?
 - No stopwords: only good for a grammar test
 - No bad for training: too many negative examples
 - Who did what to whom...
 - Items filling main semantic roles:
 - Verb predicate, child NP, AP
 - Based on syntactic parser, semantic role labeling

Processing Example

Classification

- Identify positive/negative examples
 - Create single score
 - Threshold → positive, o.w. negative

Extract feature vector

Train logistic regression learner

Data

- Documents:
 - 105 Wikipedia articles listed as vital/popular
 - Across a range of domains
- Sentences:
 - 10 selected by summarization measure
 - 10 random: why? → avoid tuning
- Labels:?
 - Human judgments via crowdsourcing
 - Rate questions (Good/Okay/Bad)

 alone? not reliable
 - In context of original sentence and other alternatives

HIT Set-up

- Good: key concepts, fair to answer
- Okay: key concepts, odd/ambiguous/long to answer
- Bad: unimportant, uninteresting
- Good = 1; o.w. 0

Source Sentence:

The large scale production of chemicals was an important development during the Industrial Revolution.

Question	Answer	Ratings
The of chemicals was an important	large scale production	Good ⊕ Okay
development during the Industrial Revolution.		
The large scale production ofwas an important development during the Industrial Revolution.	chemicals	Good ⊕ Okay
The large scale production of chemicals was an important	Industrial Revolution	Good ○Okay
development during the		

Another QA

- Maintaining quality in crowdsourcing
- Basic crowdsourcing issue:
 - Malicious or sloppy workers
- Validation:
 - Compare across annotators:
 - If average > 2 stdev from median → reject
 - Compare questions:
 - Exclude those with high variance (>0.3)
- Yield: 1821 questions, 700 "Good": alpha = 0.51

Features

- Diverse features:
 - Count: 5
 - Lexical: 11
 - Syntactic: 112
 - Semantic role: 40
 - Named entity: 11
 - Link: 3
- Characterizing:
 - Answer, source sentence, relation b/t

Features

- Token count features:
 - Questions shouldn't be too short
 - Answer gaps shouldn't be too long
 - Lengths, overlaps
- Lexical features:
 - Specific words? → Too specific
 - Word class densities: Good and bad
 - Capitalized words in answer; pronoun, stopwords in ans.

Features

- Syntactic features:
 - Syntactic structure: e.g. answer depth, relation to verb
 - POS: composition, context of answer
- Semantic role label features:
 - SRL spans relations to answer
 - Primarily subject, object roles
 - Verb predicate: strong association, but BAD
- Named entity features:
 - NE density, type frequency in answer; frequency in sent
 - Likely in question, but across types, majority w/o
- Link features: cue to importance of linked spans
 - Density and ratio of links

Results

• Equal error rate: 83% TP, 19% FP

Observations

- Performs well, can tune to balance errors
- Is it Wikipedia centric?
 - No, little change w/o Wikipedia features
- How much data does it need?
 - Learning curve levels out around 1200 samples
- Which features matter?
 - All types, feature weights distributed across types

False Positives

	Question	Answer	Confidence
1	In 1821 the Greeks declared on the sultan.	war	0.732
2	He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as of a mathematical function.	the notion	0.527
3	Not only is there much ice atop, the volcano is also being weakened by hydrothermal activity.	the volcano	0.790

False Negatives

	Question	Answer	Confidence			
1	Caesar then pursued Pompey to Egypt, where Pompey was soon	murdered	0.471			
2	Over the course of decades, individual wells draw down local temperatures and water levels until is reached with natural flows.	a new equilibrium	0.306			
3	About 7.5% of world sea trade is carried via the canal	today	0.119			
4	Asante and Dahomey concentrated on the development of "legitimate commerce" in, forming the bedrock of West Africa's modern export trade,	the form of palm oil, cocoa, tim- ber, and gold,	0.029			

Error Analysis

- False positives:
 - Need some notion of predictability, repetition
- False negatives:

Look Back

- TREC QA vs
 - Jeopardy!, web-scale relation extraction, question gen.
- Obvious differences:

Looking Back

- TREC QA vs
 - Jeopardy!, web-scale relation extraction, question gen.
- Obvious differences:
 - Scale, web vs fixed documents, question-answer direction
 - Task-specific constraints: betting, timing, evidence,...
- Core similarities:
 - Similar wide range of features applied
 - Deep + shallow approaches; learning&rules
 - Relations b/t question/answer (pattern/relation)