Shallow & Deep QA Systems

Ling 573 NLP Systems and Applications April 8, 2014

Roadmap

- QA systems overview
- QA resources

- Two extremes in QA systems:
 - Redundancy-based QA: Aranea
- Deliverable #2

General Architecture

• Why not just perform general information retrieval?

- Why not just perform general information retrieval?
 - Documents too big, non-specific for answers
- Identify shorter, focused spans (e.g., sentences)

- Why not just perform general information retrieval?
 - Documents too big, non-specific for answers
- Identify shorter, focused spans (e.g., sentences)
 - Filter for correct type: answer type classification
 - Rank passages based on a trained classifier
 - Features:
 - Question keywords, Named Entities
 - Longest overlapping sequence,
 - Shortest keyword-covering span
 - N-gram overlap b/t question and passage

- Why not just perform general information retrieval?
 - Documents too big, non-specific for answers
- Identify shorter, focused spans (e.g., sentences)
 - Filter for correct type: answer type classification
 - Rank passages based on a trained classifier
 - Features:
 - Question keywords, Named Entities
 - Longest overlapping sequence,
 - Shortest keyword-covering span
 - N-gram overlap b/t question and passage
 - For web search, use result snippets

Answer Processing

Find the specific answer in the passage

Answer Processing

- Find the specific answer in the passage
- Pattern extraction-based:
 - Include answer types, regular expressions

Pattern	Question	Answer
<ap> such as <qp></qp></ap>	What is autism?	", developmental disorders such as autism"
<qp>, a <ap></ap></qp>	What is a caldera?	"the Long Valley caldera, a volcanic crater 19 miles long"

- Similar to relation extraction:
 - Learn relation b/t answer type and aspect of question

Answer Processing

- Find the specific answer in the passage
- Pattern extraction-based:
 - Include answer types, regular expressions

Pattern	Question	Answer
<ap> such as <qp></qp></ap>	What is autism?	", developmental disorders such as autism"
<qp>, a <ap></ap></qp>	What is a caldera?	"the Long Valley caldera, a volcanic crater 19
		miles long"

- Similar to relation extraction:
 - Learn relation b/t answer type and aspect of question
 - E.g. date-of-birth/person name; term/definition
 - Can use bootstrap strategy for contexts
 - <NAME> (<BD>-<DD>) or <NAME> was born on <BD>

- System development requires resources
 - Especially true of data-driven machine learning

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test
 - Specifically manually constructed/manually annotated

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test
 - Specifically manually constructed/manually annotated
 - 'Found data'

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test
 - Specifically manually constructed/manually annotated
 - 'Found data'
 - Trivia games!!!, FAQs, Answer Sites, etc

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test
 - Specifically manually constructed/manually annotated
 - 'Found data'
 - Trivia games!!!, FAQs, Answer Sites, etc
 - Multiple choice tests (IP???)

- System development requires resources
 - Especially true of data-driven machine learning
- QA resources:
 - Sets of questions with answers for development/test
 - Specifically manually constructed/manually annotated
 - 'Found data'
 - Trivia games!!!, FAQs, Answer Sites, etc
 - Multiple choice tests (IP???)
 - Partial data: Web logs queries and click-throughs

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy
 - Wikipedia

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy
 - Wikipedia
 - Web itself
 - •
- Term management:
 - Acronym lists
 - Gazetteers
 - •

General: Machine learning tools

- General: Machine learning tools
- Passage/Document retrieval:
 - Information retrieval engine:
 - Lucene, Indri/lemur, MG
 - Sentence breaking, etc...

- General: Machine learning tools
- Passage/Document retrieval:
 - Information retrieval engine:
 - Lucene, Indri/lemur, MG
 - Sentence breaking, etc..
- Query processing:
 - Named entity extraction
 - Synonymy expansion
 - Parsing?

- General: Machine learning tools
- Passage/Document retrieval:
 - Information retrieval engine:
 - Lucene, Indri/lemur, MG
 - Sentence breaking, etc..
- Query processing:
 - Named entity extraction
 - Synonymy expansion
 - Parsing?
- Answer extraction:
 - NER, IE (patterns)

- Candidate criteria:
 - Relevance
 - Correctness
 - Conciseness:
 - No extra information
 - Completeness:
 - Penalize partial answers
 - Coherence:
 - Easily readable
 - Justification
- Tension among criteria

- Consistency/repeatability:
 - Are answers scored reliability

- Consistency/repeatability:
 - Are answers scored reliability?
- Automation:
 - Can answers be scored automatically?
 - Required for machine learning tune/test

- Consistency/repeatability:
 - Are answers scored reliability?
- Automation:
 - Can answers be scored automatically?
 - Required for machine learning tune/test
 - Short answer answer keys
 - Litkowski's patterns

- Classical:
 - Return ranked list of answer candidates

- Classical:
 - Return ranked list of answer candidates
 - Idea: Correct answer higher in list => higher score
 - Measure: Mean Reciprocal Rank (MRR)

- Classical:
 - Return ranked list of answer candidates
 - Idea: Correct answer higher in list => higher score
 - Measure: Mean Reciprocal Rank (MRR)
 - For each question,
 - Get reciprocal of rank of first correct answer

• E.g. correct answer is
$$4 = \frac{1}{4}$$

• E.g. correct answer is
$$4 \Rightarrow \frac{1}{4}$$
• None correct $\Rightarrow 0$
• Average over all questions
$$MRR = \frac{\sum_{i=1}^{N} \frac{1}{rank_i}}{N}$$

Applications

- Applications
 - Open-domain free text search
 - Fixed collections
 - News, blogs

- Applications
 - Open-domain free text search
 - Fixed collections
 - News, blogs
- Users
 - Novice
- Question types

- Applications
 - Open-domain free text search
 - Fixed collections
 - News, blogs
- Users
 - Novice
- Question types
 - Factoid -> List, relation, etc
- Answer types

- Applications
 - Open-domain free text search
 - Fixed collections
 - News, blogs
- Users
 - Novice
- Question types
 - Factoid -> List, relation, etc
- Answer types
 - Predominantly extractive, short answer in context
- Evaluation:

Dimensions of TREC QA

- Applications
 - Open-domain free text search
 - Fixed collections
 - News, blogs
- Users
 - Novice
- Question types
 - Factoid -> List, relation, etc
- Answer types
 - Predominantly extractive, short answer in context
- Evaluation:
 - Official: human; proxy: patterns
- Presentation: One interactive track

AskMSR (2001,2002); Aranea (Lin, 2007)

 Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web

- Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web
 - —When did Alaska become a state?
 - (1) Alaska became a state on January 3, 1959.
 - (2) Alaska was admitted to the Union on January 3, 1959.

- Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web
 - —When did Alaska become a state?
 - (1) Alaska became a state on January 3, 1959.
 - (2) Alaska was admitted to the Union on January 3, 1959.
 - —Who killed Abraham Lincoln?
 - (1) John Wilkes Booth killed Abraham Lincoln.
 - (2) John Wilkes Booth altered history with a bullet. He will forever be known as the man who ended Abraham Lincoln's life.

- Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web
 - —When did Alaska become a state?
 - (1) Alaska became a state on January 3, 1959.
 - (2) Alaska was admitted to the Union on January 3, 1959.
 - —Who killed Abraham Lincoln?
 - (1) John Wilkes Booth killed Abraham Lincoln.
 - (2) John Wilkes Booth altered history with a bullet. He will forever be known as the man who ended Abraham Lincoln's life.
- Text collection

- Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web
 - —When did Alaska become a state?
 - (1) Alaska became a state on January 3, 1959.
 - (2) Alaska was admitted to the Union on January 3, 1959.
 - —Who killed Abraham Lincoln?
 - (1) John Wilkes Booth killed Abraham Lincoln.
 - (2) John Wilkes Booth altered history with a bullet. He will forever be known as the man who ended Abraham Lincoln's life.
- Text collection may only have (2), but web?

- Systems exploit statistical regularity to find "easy" answers to factoid questions on the Web
 - —When did Alaska become a state?
 - (1) Alaska became a state on January 3, 1959.
 - (2) Alaska was admitted to the Union on January 3, 1959.
 - —Who killed Abraham Lincoln?
 - (1) John Wilkes Booth killed Abraham Lincoln.
 - (2) John Wilkes Booth altered history with a bullet. He will forever be known as the man who ended Abraham Lincoln's life.
- Text collection may only have (2), but web? anything

• How does redundancy help find answers?

- How does redundancy help find answers?
- Typical approach:
 - Answer type matching
 - E.g. NER, but
 - Relies on large knowledge-base
- Redundancy approach:

- How does redundancy help find answers?
- Typical approach:
 - Answer type matching
 - E.g. NER, but
 - Relies on large knowledge-based
- Redundancy approach:
 - Answer should have high correlation w/query terms
 - Present in many passages
 - Uses n-gram generation and processing

- How does redundancy help find answers?
- Typical approach:
 - Answer type matching
 - E.g. NER, but
 - Relies on large knowledge-based
- Redundancy approach:
 - Answer should have high correlation w/query terms
 - Present in many passages
 - Uses n-gram generation and processing
 - In 'easy' passages, simple string match effective

- AskMSR (2001):
 - Lenient: 0.43; Rank: 6/36; Strict: 0.35; Rank: 9/36

- AskMSR (2001):
 - Lenient: 0.43; Rank: 6/36; Strict: 0.35; Rank: 9/36
- Aranea (2002, 2003):
 - Lenient: 45%; Rank: 5; Strict: 30%; Rank:6-8

- AskMSR (2001):
 - Lenient: 0.43; Rank: 6/36; Strict: 0.35; Rank: 9/36
- Aranea (2002, 2003):
 - Lenient: 45%; Rank: 5; Strict: 30%; Rank:6-8
- Concordia (2007): Strict: 25%; Rank 5

- AskMSR (2001):
 - Lenient: 0.43; Rank: 6/36; Strict: 0.35; Rank: 9/36
- Aranea (2002, 2003):
 - Lenient: 45%; Rank: 5; Strict: 30%; Rank:6-8
- Concordia (2007): Strict: 25%; Rank 5
- Many systems incorporate some redundancy
 - Answer validation
 - Answer reranking
 - LCC: huge knowledge-based system, redundancy improved

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings
- Q: How many times did Bjorn Borg win Wimbledon?
 - Bjorn Borg blah blah blah Wimbledon blah 5 blah
 - Wimbledon blah blah Bjorn Borg blah 37 blah.
 - blah Bjorn Borg blah blah 5 blah blah Wimbledon
 - 5 blah blah Wimbledon blah blah Bjorn Borg.

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings
- Q: How many times did Bjorn Borg win Wimbledon?
 - Bjorn Borg blah blah blah Wimbledon blah 5 blah
 - Wimbledon blah blah Bjorn Borg blah 37 blah.
 - blah Bjorn Borg blah blah 5 blah blah Wimbledon
 - 5 blah blah Wimbledon blah blah Bjorn Borg.
 - Probably 5

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:
 - Hypothesis: Wording of question similar to answer
 - For 'where' queries, move 'is' to all possible positions
 - Where is the Louvre Museum located? =>
 - Is the Louvre Museum located
 - The is Louvre Museum located
 - The Louvre Museum is located, .etc.

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:
 - Hypothesis: Wording of question similar to answer
 - For 'where' queries, move 'is' to all possible positions
 - Where is the Louvre Museum located? =>
 - Is the Louvre Museum located
 - The is Louvre Museum located
 - The Louvre Museum is located, .etc.
- Create type-specific answer type (Person, Date, Loc)

- 3 query forms:
 - Initial baseline query

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -> A verb+ed B ?x (general)
 - Where is A? ->

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -> A verb+ed B ?x (general)
 - Where is A? -> A is located in ?x (specific)
 - Inexact reformulation: bag-of-words

Examples

What year did Alaska become a state?

[baseline] What year did Alaska become a state

[inexact] Alaska became a state

[exact] Alaska became a state ?x

Who was the first person to run the mile in less than four minutes?

[baseline] Who was the first person to run the mile in less than four minutes?

[inexact] the first person to run the mile in less than four minutes

[exact] the first person to run the mile in less than four minutes was ?x

[exact] ?x was the first person to run the mile in less than four minutes

Redundancy-based Answer Extraction

- Prior processing:
 - Question formulation
 - Web search
 - Retrieve snippets top 100

Redundancy-based Answer Extraction

- Prior processing:
 - Question formulation
 - Web search
 - Retrieve snippets top 100
- N-grams:
 - Generation
 - Voting
 - Filtering
 - Combining
 - Scoring
 - Reranking

N-gram Generation & Voting

- N-gram generation from unique snippets:
 - Approximate chunking without syntax
 - All uni-, bi-, tri-, tetra- grams
 - Concordia added 5-grams (prior errors)

N-gram Generation & Voting

- N-gram generation from unique snippets:
 - Approximate chunking without syntax
 - All uni-, bi-, tri-, tetra- grams
 - Concordia added 5-grams (prior errors)
 - Score: based on source query: exact 5x, others 1x
- N-gram voting:
 - Collates n-grams
 - N-gram gets sum of scores of occurrences
 - What would be highest ranked?

N-gram Generation & Voting

- N-gram generation from unique snippets:
 - Approximate chunking without syntax
 - All uni-, bi-, tri-, tetra- grams
 - Concordia added 5-grams (prior errors)
 - Score: based on source query: exact 5x, others 1x
- N-gram voting:
 - Collates n-grams
 - N-gram gets sum of scores of occurrences
 - What would be highest ranked?
 - Specific, frequent: Question terms, stopwords

N-gram Filtering

- Throws out 'blatant' errors
 - Conservative or aggressive?

- Throws out 'blatant' errors
 - Conservative or aggressive?
 - Conservative: can't recover error
- Question-type-neutral filters:

- Throws out 'blatant' errors
 - Conservative or aggressive?
 - Conservative: can't recover error
- Question-type-neutral filters:
 - Exclude if begin/end with stopword
 - Exclude if contain words from question, except
 - 'Focus words' : e.g. units
- Question-type-specific filters:

- Throws out 'blatant' errors
 - Conservative or aggressive?
 - Conservative: can't recover error
- Question-type-neutral filters:
 - Exclude if begin/end with stopword
 - Exclude if contain words from question, except
 - 'Focus words' : e.g. units
- Question-type-specific filters:
 - 'how far', 'how fast':

- Throws out 'blatant' errors
 - Conservative or aggressive?
 - Conservative: can't recover error
- Question-type-neutral filters:
 - Exclude if begin/end with stopword
 - Exclude if contain words from question, except
 - 'Focus words' : e.g. units
- Question-type-specific filters:
 - 'how far', 'how fast': exclude if no numeric
 - 'who', 'where':

- Throws out 'blatant' errors
 - Conservative or aggressive?
 - Conservative: can't recover error
- Question-type-neutral filters:
 - Exclude if begin/end with stopword
 - Exclude if contain words from question, except
 - 'Focus words' : e.g. units
- Question-type-specific filters:
 - 'how far', 'how fast': exclude if no numeric
 - 'who', 'where': exclude if not NE (first & last caps)

- Closed-class filters:
 - Exclude if not members of an enumerable list

- Closed-class filters:
 - Exclude if not members of an enumerable list
 - E.g. 'what year ' -> must be acceptable date year

- Closed-class filters:
 - Exclude if not members of an enumerable list
 - E.g. 'what year ' -> must be acceptable date year
- Example after filtering:
 - Who was the first person to run a sub-four-minute mile?

Candidate	Score
Bannister	137
Roger	114
Roger Bannister	103
English	26

- Impact of different filters:
 - Highly significant differences when run w/subsets

- Impact of different filters:
 - Highly significant differences when run w/subsets
 - No filters: drops 70%

- Impact of different filters:
 - Highly significant differences when run w/subsets
 - No filters: drops 70%
 - Type-neutral only: drops 15%

- Impact of different filters:
 - Highly significant differences when run w/subsets
 - No filters: drops 70%
 - Type-neutral only: drops 15%
 - Type-neutral & Type-specific: drops 5%

Current scoring favors longer or shorter spans?

- Current scoring favors longer or shorter spans?
 - E.g. Roger or Bannister or Roger Bannister or Mr.....

- Current scoring favors longer or shorter spans?
 - E.g. Roger or Bannister or Roger Bannister or Mr.....
 - Bannister pry highest occurs everywhere R.B. +
- Generally, good answers longer (up to a point)

- Current scoring favors longer or shorter spans?
 - E.g. Roger or Bannister or Roger Bannister or Mr.....
 - Bannister pry highest occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $S_c += \Sigma S_t$, where t is unigram in c
- Possible issues:

- Current scoring favors longer or shorter spans?
 - E.g. Roger or Bannister or Roger Bannister or Mr.....
 - Bannister pry highest occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $S_c += \Sigma S_t$, where t is unigram in c
- Possible issues:
 - Bad units: Roger Bannister was

- Current scoring favors longer or shorter spans?
 - E.g. Roger or Bannister or Roger Bannister or Mr.....
 - Bannister pry highest occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $S_c += \Sigma S_t$, where t is unigram in c
- Possible issues:
 - Bad units: Roger Bannister was blocked by filters
 - Also, increments score so long bad spans lower
- Improves significantly

Not all terms created equal

- Not all terms created equal
 - Usually answers highly specific
 - Also disprefer non-units
- Solution

- Not all terms created equal
 - Usually answers highly specific
 - Also disprefer non-units
- Solution: IDF-based scoring
 S_c=S_c * average_unigram_idf

- Not all terms created equal
 - Usually answers highly specific
 - Also disprefer non-units
- Solution: IDF-based scoring
 S_c=S_c * average_unigram_idf

After combining

Candidate	Score
Roger Bannister	354
Sir Roger Gilbert Bannister	286
Sir Roger Bannister	280
Bannister Sir Roger	278
• • •	• • •

- Not all terms created equal
 - Usually answers highly specific
 - Also disprefer non-units
- Solution: IDF-based scoring
 S_c=S_c * average_unigram_idf

After combining		After scoring	
Candidate	Score	Candidate	Score
Roger Bannister	354	Roger Bannister	2377
Sir Roger Gilbert Bannister	286	Englishman Roger Bannister	1853
Sir Roger Bannister	280	Sir Roger Gilbert Bannister	1775
Bannister Sir Roger	278	Sir Roger Bannister	1768
•••		•••	

N-gram Reranking

Promote best answer candidates:

N-gram Reranking

- Promote best answer candidates:
 - Filter any answers not in at least two snippets

N-gram Reranking

- Promote best answer candidates:
 - Filter any answers not in at least two snippets
 - Use answer type specific forms to raise matches
 - E.g. 'where' -> boosts 'city, state'

Small improvement depending on answer type

Summary

- Redundancy-based approaches
 - Leverage scale of web search
 - Take advantage of presence of 'easy' answers on web
 - Exploit statistical association of question/answer text

Summary

- Redundancy-based approaches
 - Leverage scale of web search
 - Take advantage of presence of 'easy' answers on web
 - Exploit statistical association of question/answer text
- Increasingly adopted:
 - Good performers independently for QA
 - Provide significant improvements in other systems
 - Esp. for answer filtering

Summary

- Redundancy-based approaches
 - Leverage scale of web search
 - Take advantage of presence of 'easy' answers on web
 - Exploit statistical association of question/answer text
- Increasingly adopted:
 - Good performers independently for QA
 - Provide significant improvements in other systems
 - Esp. for answer filtering
- Does require some form of 'answer projection'
 - Map web information to TREC document

Deliverable #2

- Baseline end-to-end Q/A system:
 - Redundancy-based with answer projection also viewed as
 - Retrieval with web-based boosting
- Implementation: Main components
 - (Suggested) Basic redundancy approach
 - Basic retrieval approach (IR next lecture)

Data

- Questions:
 - XML formatted questions and question series
- Answers:
 - Answer 'patterns' with evidence documents
- Training/Devtext/Evaltest:
 - Training: Thru 2005
 - Devtest: 2006
 - Held-out: ...
- Will be in /dropbox directory on patas
- Documents:
 - AQUAINT news corpus data with minimal markup