
Strategies for QA
& Information Retrieval

Ling573
NLP Systems and Applications

April 10, 2014

Roadmap
�  Shallow and Deep processing for Q/A

�  AskMSR, ARANEA: Shallow processing Q/A
�  Wrap-up

�  PowerAnswer-2: Deep processing Q/A

�  Information Retrieval:
�  Problem:

�  Matching Topics and Documents
�  Methods:

�  Vector Space Model
�  Retrieval evaluation

Redundancy-based
Answer Extraction

�  Prior processing:
�  Question formulation
�  Web search
�  Retrieve snippets – top 100

�  N-grams:
�  Generation
�  Voting
�  Filtering
�  Combining
�  Scoring
�  Reranking

N-gram Filtering
�  Throws out ‘blatant’ errors

�  Conservative or aggressive?
�  Conservative: can’t recover error

�  Question-type-neutral filters:
�  Exclude if begin/end with stopword
�  Exclude if contain words from question, except

�  ‘Focus words’ : e.g. units

�  Question-type-specific filters:
�  ‘how far’, ‘how fast’: exclude if no numeric
�  ‘who’,’where’: exclude if not NE (first & last caps)

N-gram Filtering
�  Closed-class filters:

�  Exclude if not members of an enumerable list

N-gram Filtering
�  Closed-class filters:

�  Exclude if not members of an enumerable list

�  E.g. ‘what year ‘ -> must be acceptable date year

N-gram Filtering
�  Closed-class filters:

�  Exclude if not members of an enumerable list

�  E.g. ‘what year ‘ -> must be acceptable date year

�  Example after filtering:
�  Who was the first person to run a sub-four-minute mile?

N-gram Combining
�  Current scoring favors longer or shorter spans?

N-gram Combining
�  Current scoring favors longer or shorter spans?

�  E.g. Roger or Bannister or Roger Bannister or Mr…..

N-gram Combining
�  Current scoring favors longer or shorter spans?

�  E.g. Roger or Bannister or Roger Bannister or Mr…..
�  Bannister pry highest – occurs everywhere R.B. +

�  Generally, good answers longer (up to a point)

N-gram Combining
�  Current scoring favors longer or shorter spans?

�  E.g. Roger or Bannister or Roger Bannister or Mr…..
�  Bannister pry highest – occurs everywhere R.B. +

�  Generally, good answers longer (up to a point)

�  Update score: Sc += ΣSt, where t is unigram in c

�  Possible issues:

N-gram Combining
�  Current scoring favors longer or shorter spans?

�  E.g. Roger or Bannister or Roger Bannister or Mr…..
�  Bannister pry highest – occurs everywhere R.B. +

�  Generally, good answers longer (up to a point)

�  Update score: Sc += ΣSt, where t is unigram in c

�  Possible issues:
�  Bad units: Roger Bannister was

N-gram Combining
�  Current scoring favors longer or shorter spans?

�  E.g. Roger or Bannister or Roger Bannister or Mr…..
�  Bannister pry highest – occurs everywhere R.B. +

�  Generally, good answers longer (up to a point)

�  Update score: Sc += ΣSt, where t is unigram in c

�  Possible issues:
�  Bad units: Roger Bannister was – blocked by filters

�  Also, increments score so long bad spans lower

�  Improves significantly

N-gram Scoring
�  Not all terms created equal

N-gram Scoring
�  Not all terms created equal

�  Usually answers highly specific

�  Also disprefer non-units

�  Solution

N-gram Scoring
�  Not all terms created equal

�  Usually answers highly specific

�  Also disprefer non-units

�  Solution: IDF-based scoring
Sc=Sc * average_unigram_idf

N-gram Scoring
�  Not all terms created equal

�  Usually answers highly specific

�  Also disprefer non-units

�  Solution: IDF-based scoring
Sc=Sc * average_unigram_idf

N-gram Scoring
�  Not all terms created equal

�  Usually answers highly specific

�  Also disprefer non-units

�  Solution: IDF-based scoring
Sc=Sc * average_unigram_idf

N-gram Reranking
�  Promote best answer candidates:

N-gram Reranking
�  Promote best answer candidates:

�  Filter any answers not in at least two snippets

N-gram Reranking
�  Promote best answer candidates:

�  Filter any answers not in at least two snippets

�  Use answer type specific forms to raise matches
�  E.g. ‘where’ -> boosts ‘city, state’

�  Small improvement depending on answer type

Summary
�  Redundancy-based approaches

�  Leverage scale of web search

�  Take advantage of presence of ‘easy’ answers on web
�  Exploit statistical association of question/answer text

Summary
�  Redundancy-based approaches

�  Leverage scale of web search

�  Take advantage of presence of ‘easy’ answers on web
�  Exploit statistical association of question/answer text

�  Increasingly adopted:
�  Good performers independently for QA

�  Provide significant improvements in other systems
�  Esp. for answer filtering

Summary
�  Redundancy-based approaches

�  Leverage scale of web search
�  Take advantage of presence of ‘easy’ answers on web
�  Exploit statistical association of question/answer text

�  Increasingly adopted:
�  Good performers independently for QA
�  Provide significant improvements in other systems

�  Esp. for answer filtering

�  Does require some form of ‘answer projection’
�  Map web information to TREC document

Deliverable #2
�  Baseline end-to-end Q/A system:

�  Redundancy-based with answer projection

also viewed as
�  Retrieval with web-based boosting

�  Implementation: Main components
�  (Suggested) Basic redundancy approach
�  Basic retrieval approach (IR next lecture)

Data
�  Questions:

�  XML formatted questions and question series

�  Answers:
�  Answer ‘patterns’ with evidence documents

�  Training/Devtext/Evaltest:
�  Training: Thru 2005
�  Devtest: 2006
�  Held-out: …

�  Will be in /dropbox directory on patas

�  Documents:
�  AQUAINT news corpus data with minimal markup

PowerAnswer2
�  Language Computer Corp.

�  Lots of UT Dallas affiliates

�  Tasks: factoid questions

�  Major novel components:
�  Web-boosting of results

�  COGEX logic prover

�  Temporal event processing

�  Extended semantic chains

�  Results: Best factoid system: 0.713 (vs 0.666, 03.329)

Challenges: Co-reference
�  Single, basic referent:

Challenges: Co-reference
�  Single, basic referent:

�  Multiple possible antecedents:
�  Depends on previous correct answers

Challenges: Events
�  Event answers:

�  Not just nominal concepts

Challenges: Events
�  Event answers:

�  Not just nominal concepts

�  Nominal events:
�  Preakness 1998

Challenges: Events
�  Event answers:

�  Not just nominal concepts

�  Nominal events:
�  Preakness 1998

�  Complex events:
�  Plane clips cable wires in Italian resort

Challenges: Events
�  Event answers:

�  Not just nominal concepts

�  Nominal events:
�  Preakness 1998

�  Complex events:
�  Plane clips cable wires in Italian resort

�  Establish question context, constraints

Handling Question Series
�  Given target and series, how deal with reference?

Handling Question Series
�  Given target and series, how deal with reference?

�  Shallowest approach:
�  Concatenation:

�  Add the ‘target’ to the question

Handling Question Series
�  Given target and series, how deal with reference?

�  Shallowest approach:
�  Concatenation:

�  Add the ‘target’ to the question

�  Shallow approach:
�  Replacement:

�  Replace all pronouns with target

Handling Question Series
�  Given target and series, how deal with reference?

�  Shallowest approach:
�  Concatenation:

�  Add the ‘target’ to the question

�  Shallow approach:
�  Replacement:

�  Replace all pronouns with target

�  Least shallow approach:
�  Heuristic reference resolution

Question Series Results
�  No clear winning strategy

Question Series Results
�  No clear winning strategy

�  All largely about the target
�  So no big win for anaphora resolution

�  If using bag-of-words features in search, works fine

Question Series Results
�  No clear winning strategy

�  All largely about the target
�  So no big win for anaphora resolution

�  If using bag-of-words features in search, works fine

�  ‘Replacement’ strategy can be problematic
�  E.g. Target=Nirvana:

�  What is their biggest hit?

Question Series Results
�  No clear winning strategy

�  All largely about the target
�  So no big win for anaphora resolution

�  If using bag-of-words features in search, works fine

�  ‘Replacement’ strategy can be problematic
�  E.g. Target=Nirvana:

�  What is their biggest hit?

�  When was the band formed?

Question Series Results
�  No clear winning strategy

�  All largely about the target
�  So no big win for anaphora resolution

�  If using bag-of-words features in search, works fine

�  ‘Replacement’ strategy can be problematic
�  E.g. Target=Nirvana:

�  What is their biggest hit?

�  When was the band formed?

�  Wouldn’t replace ‘the band’

Question Series Results
�  No clear winning strategy

�  All largely about the target
�  So no big win for anaphora resolution
�  If using bag-of-words features in search, works fine

�  ‘Replacement’ strategy can be problematic
�  E.g. Target=Nirvana:
�  What is their biggest hit?
�  When was the band formed?

�  Wouldn’t replace ‘the band’

�  Most teams concatenate

PowerAnswer-2
�  Factoid QA system:

PowerAnswer-2
�  Standard main components:

�  Question analysis, passage retrieval, answer processing

PowerAnswer-2
�  Standard main components:

�  Question analysis, passage retrieval, answer processing

�  Web-based answer boosting

PowerAnswer-2
�  Standard main components:

�  Question analysis, passage retrieval, answer processing

�  Web-based answer boosting

�  Complex components:

PowerAnswer-2
�  Standard main components:

�  Question analysis, passage retrieval, answer processing

�  Web-based answer boosting

�  Complex components:
�  COGEX abductive prover

�  Word knowledge, semantics:
�  Extended WordNet, etc

�  Temporal processing

Web-Based Boosting
�  Create search engine queries from question

Web-Based Boosting
�  Create search engine queries from question

�  Extract most redundant answers from search
�  Cf. Dumais et al – AskMSR; Lin – ARANEA

Web-Based Boosting
�  Create search engine queries from question

�  Extract most redundant answers from search
�  Cf. Dumais et al - AskMSR; Lin – ARANEA

�  Increase weight on TREC candidates that match
�  Higher weight if higher frequency

Web-Based Boosting
�  Create search engine queries from question

�  Extract most redundant answers from search
�  Cf. Dumais et al - AskMSR; Lin – ARANEA

�  Increase weight on TREC candidates that match
�  Higher weight if higher frequency

�  Intuition:
�  Common terms in search likely to be answer
�  QA answer search too focused on query terms

Web-Based Boosting
�  Create search engine queries from question

�  Extract most redundant answers from search
�  Cf. Dumais et al - AskMSR; Lin – ARANEA

�  Increase weight on TREC candidates that match
�  Higher weight if higher frequency

�  Intuition:
�  Common terms in search likely to be answer
�  QA answer search too focused on query terms
�  Reweighting improves

�  Web-boosting improves significantly: 20%

Deep Processing:
Query/Answer Formulation

�  Preliminary shallow processing:
�  Tokenization, POS tagging, NE recognition, Preprocess

Deep Processing:
Query/Answer Formulation

�  Preliminary shallow processing:
�  Tokenization, POS tagging, NE recognition, Preprocess

�  Parsing creates syntactic representation:
�  Focused on nouns, verbs, and particles

�  Attachment

Deep Processing:
Query/Answer Formulation

�  Preliminary shallow processing:
�  Tokenization, POS tagging, NE recognition, Preprocess

�  Parsing creates syntactic representation:
�  Focused on nouns, verbs, and particles

�  Attachment

�  Coreference resolution links entity references

Deep Processing:
Query/Answer Formulation

�  Preliminary shallow processing:
�  Tokenization, POS tagging, NE recognition, Preprocess

�  Parsing creates syntactic representation:
�  Focused on nouns, verbs, and particles

�  Attachment

�  Coreference resolution links entity references

�  Translate to full logical form
�  As close as possible to syntax

Syntax to Logical Form

Syntax to Logical Form

Syntax to Logical Form

Deep Processing:
Answer Selection

�  Cogex prover:
�  Applies abductive inference

�  Chain of reasoning to justify the answer given the question

�  Mix of logical and lexical inference

Deep Processing:
Answer Selection

�  Cogex prover:
�  Applies abductive inference

�  Chain of reasoning to justify the answer given the question

�  Mix of logical and lexical inference

�  Main mechanism: Lexical chains:
�  Bridge gap in lexical choice b/t Q and A

�  Improve retrieval and answer selection

Deep Processing:
Answer Selection

�  Cogex prover:
�  Applies abductive inference

�  Chain of reasoning to justify the answer given the question

�  Mix of logical and lexical inference

�  Main mechanism: Lexical chains:
�  Bridge gap in lexical choice b/t Q and A

�  Improve retrieval and answer selection

�  Create connections between synsets through topicality

Deep Processing:
Answer Selection

�  Cogex prover:
�  Applies abductive inference

�  Chain of reasoning to justify the answer given the question
�  Mix of logical and lexical inference

�  Main mechanism: Lexical chains:
�  Bridge gap in lexical choice b/t Q and A

�  Improve retrieval and answer selection
�  Create connections between synsets through topicality

�  Q: When was the internal combustion engine invented?

�  A: The first internal-combustion engine was built in 1867.

Deep Processing:
Answer Selection

�  Cogex prover:
�  Applies abductive inference

�  Chain of reasoning to justify the answer given the question
�  Mix of logical and lexical inference

�  Main mechanism: Lexical chains:
�  Bridge gap in lexical choice b/t Q and A

�  Improve retrieval and answer selection
�  Create connections between synsets through topicality

�  Q: When was the internal combustion engine invented?

�  A: The first internal-combustion engine was built in 1867.

�  Yields 12% improvement in accuracy!

Example
�  How hot does the inside of an active volcano get?

�  Get(TEMPERATURE, inside(active(volcano)))

�  “lava fragments belched out of the mountain were
as hot as 300 degrees Fahrenheit”

�  Fragments(lava,TEMPERATURE(degrees(300)),
belched(out, mountain))
�  Volcano ISA mountain; lava ISPARTOF volcano
�  Lava inside volcano
�  Fragments of lava HAVEPROPERTIESOF lava

�  Knowledge derived from WordNet to proof ‘axioms’

Ex. Due to D. Jurafsky

Temporal Processing
�  16% of factoid questions include time reference

Temporal Processing
�  16% of factoid questions include time reference

�  Index documents by date: absolute, relative

Temporal Processing
�  16% of factoid questions include time reference

�  Index documents by date: absolute, relative

�  Identify temporal relations b/t events
�  Store as triples of (S, E1, E2)

�  S is temporal relation signal – e.g. during, after

Temporal Processing
�  16% of factoid questions include time reference

�  Index documents by date: absolute, relative

�  Identify temporal relations b/t events
�  Store as triples of (S, E1, E2)

�  S is temporal relation signal – e.g. during, after

�  Answer selection:
�  Prefer passages matching Question temporal constraint

�  Discover events related by temporal signals in Q & As
�  Perform temporal unification; boost good As

Temporal Processing
�  16% of factoid questions include time reference

�  Index documents by date: absolute, relative

�  Identify temporal relations b/t events
�  Store as triples of (S, E1, E2)

�  S is temporal relation signal – e.g. during, after

�  Answer selection:
�  Prefer passages matching Question temporal constraint
�  Discover events related by temporal signals in Q & As
�  Perform temporal unification; boost good As

�  Improves only by 2%
�  Mostly captured by surface forms

Results

Matching Topics and Documents
�  Two main perspectives:

�  Pre-defined, fixed, finite topics:
�  “Text Classification”

Matching Topics and Documents
�  Two main perspectives:

�  Pre-defined, fixed, finite topics:
�  “Text Classification”

�  Arbitrary topics, typically defined by statement of
information need (aka query)
�  “Information Retrieval”

�  Ad-hoc retrieval

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:

�  Documents:
�  Basic unit available for retrieval

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:

�  Documents:
�  Basic unit available for retrieval

�  Typically: Newspaper story, encyclopedia entry

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:

�  Documents:
�  Basic unit available for retrieval

�  Typically: Newspaper story, encyclopedia entry

�  Alternatively: paragraphs, sentences; web page, site

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:

�  Documents:
�  Basic unit available for retrieval

�  Typically: Newspaper story, encyclopedia entry

�  Alternatively: paragraphs, sentences; web page, site

�  Query:
�  Specification of information need

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:
�  Documents:

�  Basic unit available for retrieval
�  Typically: Newspaper story, encyclopedia entry
�  Alternatively: paragraphs, sentences; web page, site

�  Query:
�  Specification of information need

�  Terms:
�  Minimal units for query/document

Information Retrieval
Components

�  Document collection:
�  Used to satisfy user requests, collection of:
�  Documents:

�  Basic unit available for retrieval
�  Typically: Newspaper story, encyclopedia entry
�  Alternatively: paragraphs, sentences; web page, site

�  Query:
�  Specification of information need

�  Terms:
�  Minimal units for query/document

�  Words, or phrases

Information Retrieval
Architecture

Vector Space Model
�  Basic representation:

�  Document and query semantics defined by their terms

Vector Space Model
�  Basic representation:

�  Document and query semantics defined by their terms

�  Typically ignore any syntax
�  Bag-of-words (or Bag-of-terms)

�  Dog bites man == Man bites dog

Vector Space Model
�  Basic representation:

�  Document and query semantics defined by their terms

�  Typically ignore any syntax
�  Bag-of-words (or Bag-of-terms)

�  Dog bites man == Man bites dog

�  Represent documents and queries as
�  Vectors of term-based features

Vector Space Model
�  Basic representation:

�  Document and query semantics defined by their terms
�  Typically ignore any syntax

�  Bag-of-words (or Bag-of-terms)
�  Dog bites man == Man bites dog

�  Represent documents and queries as
�  Vectors of term-based features
�  E.g.
�  N:

dj = (w1, j,w2, j,...,wN , j);

qk = (w1,k,w2,k,...,wN ,k)

Vector Space Model
�  Basic representation:

�  Document and query semantics defined by their terms
�  Typically ignore any syntax

�  Bag-of-words (or Bag-of-terms)
�  Dog bites man == Man bites dog

�  Represent documents and queries as
�  Vectors of term-based features
�  E.g.
�  N:

�  # of terms in vocabulary of collection: Problem?

dj = (w1, j,w2, j,...,wN , j);

qk = (w1,k,w2,k,...,wN ,k)

Representation
�  Solution 1:
�  Binary features:

� w=1 if term present, 0 otherwise

�  Similarity:
�  Number of terms in common
�  Dot product

�  Issues?

sim(qk,

dj) = wi,k

i=1

N

∑ wi, j

VSM Weights
�  What should the weights be?

�  “Aboutness”
�  To what degree is this term what document is about?
�  Within document measure
�  Term frequency (tf): # occurrences of t in doc j

�  Examples:
�  Terms: chicken, fried, oil, pepper
�  D1: fried chicken recipe: (8, 2, 7,4)
�  D2: poached chick recipe: (6, 0, 0, 0)
�  Q: fried chicken: (1, 1, 0, 0)

Vector Space Model (II)
�  Documents & queries:

�  Document collection: term-by-document matrix

�  View as vector in multidimensional space
�  Nearby vectors are related

�  Normalize for vector length

Vector Space Model

Vector Similarity
Computation

� Normalization:
�  Improve over dot product

� Capture weights

� Compensate for document length

�  :

Vector Similarity
Computation

� Normalization:
�  Improve over dot product

� Capture weights

� Compensate for document length

�  Cosine similarity
sim(qk,

dj) =

wi,kwi, ji=1

N
∑

wi,k
2

i=1

N
∑ wi, j

2

i=1

N
∑

Vector Similarity
Computation

� Normalization:
�  Improve over dot product

� Capture weights

� Compensate for document length

�  Cosine similarity

�  Identical vectors:

sim(qk,

dj) =

wi,kwi, ji=1

N
∑

wi,k
2

i=1

N
∑ wi, j

2

i=1

N
∑

Vector Similarity
Computation

� Normalization:
�  Improve over dot product

� Capture weights
� Compensate for document length

�  Cosine similarity

�  Identical vectors: 1
� No overlap:

sim(qk,

dj) =

wi,kwi, ji=1

N
∑

wi,k
2

i=1

N
∑ wi, j

2

i=1

N
∑

Vector Similarity
Computation

� Normalization:
�  Improve over dot product

� Capture weights
� Compensate for document length

�  Cosine similarity

�  Identical vectors: 1
� No overlap: 0

sim(qk,

dj) =

wi,kwi, ji=1

N
∑

wi,k
2

i=1

N
∑ wi, j

2

i=1

N
∑

Term Weighting Redux
�  “Aboutness”

�  Term frequency (tf): # occurrences of t in doc j

Term Weighting Redux
�  “Aboutness”

�  Term frequency (tf): # occurrences of t in doc j
�  Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6

Term Weighting Redux
�  “Aboutness”

�  Term frequency (tf): # occurrences of t in doc j
�  Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6

�  Question: what about ‘Representative’ vs ‘Giffords’?

Term Weighting Redux
�  “Aboutness”

�  Term frequency (tf): # occurrences of t in doc j
�  Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6

�  Question: what about ‘Representative’ vs ‘Giffords’?

�  “Specificity”
�  How surprised are you to see this term?

�  Collection frequency

�  Inverse document frequency (idf):

)log(
i

i n
Nidf =

Term Weighting Redux
�  “Aboutness”

�  Term frequency (tf): # occurrences of t in doc j
�  Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6

�  Question: what about ‘Representative’ vs ‘Giffords’?

�  “Specificity”
�  How surprised are you to see this term?

�  Collection frequency

�  Inverse document frequency (idf):

)log(
i

i n
Nidf = wi, j = tfi, j × idfi

Tf-idf Similarity
�  Variants of tf-idf prevalent in most VSM

sim(q
→

,d
→

) =
tfw,qtfw,d (idfw)

2

w∈q,d
∑

(tfqi ,qidfqi)
2

qi∈q
∑ (tfdi ,didfdi)

2

di∈d
∑

Term Selection
�  Selection:

�  Some terms are truly useless

Term Selection
�  Selection:

�  Some terms are truly useless
�  Too frequent:

�  Appear in most documents

Term Selection
�  Selection:

�  Some terms are truly useless
�  Too frequent:

�  Appear in most documents

�  Little/no semantic content

Term Selection
�  Selection:

�  Some terms are truly useless
�  Too frequent:

�  Appear in most documents

�  Little/no semantic content
�  Function words

�  E.g. the, a, and,…

Term Selection
�  Selection:

�  Some terms are truly useless
�  Too frequent:

�  Appear in most documents

�  Little/no semantic content
�  Function words

�  E.g. the, a, and,…

�  Indexing inefficiency:
�  Store in inverted index:

�  For each term, identify documents where it appears

�  ‘the’: every document is a candidate match

Term Selection
�  Selection:

�  Some terms are truly useless
�  Too frequent:

�  Appear in most documents
�  Little/no semantic content

�  Function words
�  E.g. the, a, and,…

�  Indexing inefficiency:
�  Store in inverted index:

�  For each term, identify documents where it appears
�  ‘the’: every document is a candidate match

�  Remove ‘stop words’ based on list
�  Usually document-frequency based

Term Creation
�  Too many surface forms for same concepts

Term Creation
�  Too many surface forms for same concepts

�  E.g. inflections of words: verb conjugations, plural
�  Process, processing, processed

�  Same concept, separated by inflection

Term Creation
�  Too many surface forms for same concepts

�  E.g. inflections of words: verb conjugations, plural
�  Process, processing, processed

�  Same concept, separated by inflection

�  Stem terms:
�  Treat all forms as same underlying

�  E.g., ‘processing’ -> ‘process’; ‘Beijing’ -> ‘Beije’

�  Issues:

Term Creation
�  Too many surface forms for same concepts

�  E.g. inflections of words: verb conjugations, plural
�  Process, processing, processed
�  Same concept, separated by inflection

�  Stem terms:
�  Treat all forms as same underlying

�  E.g., ‘processing’ -> ‘process’; ‘Beijing’ -> ‘Beije’

�  Issues:
�  Can be too aggressive

�  AIDS, aids -> aid; stock, stocks, stockings -> stock

Evaluating IR
�  Basic measures: Precision and Recall

Evaluating IR
�  Basic measures: Precision and Recall

�  Relevance judgments:
�  For a query, returned document is relevant or non-relevant

�  Typically binary relevance: 0/1

Evaluating IR
�  Basic measures: Precision and Recall

�  Relevance judgments:
�  For a query, returned document is relevant or non-relevant

�  Typically binary relevance: 0/1

�  T: returned documents; U: true relevant documents
�  R: returned relevant documents
�  N: returned non-relevant documents

Evaluating IR
�  Basic measures: Precision and Recall

�  Relevance judgments:
�  For a query, returned document is relevant or non-relevant

�  Typically binary relevance: 0/1

�  T: returned documents; U: true relevant documents
�  R: returned relevant documents
�  N: returned non-relevant documents

Pr ecision =
R
T
;Recall =

R
U

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:
�  In first 10 positions?

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:
�  In first 10 positions?

�  In last 10 positions?

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:
�  In first 10 positions?

�  In last 10 positions?

�  Score by precision and recall – which is better?

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:
�  In first 10 positions?

�  In last 10 positions?

�  Score by precision and recall – which is better?
�  Identical !!!

�  Correspond to intuition? NO!

Evaluating IR
�  Issue: Ranked retrieval

�  Return top 1K documents: ‘best’ first

�  10 relevant documents returned:
�  In first 10 positions?

�  In last 10 positions?

�  Score by precision and recall – which is better?
�  Identical !!!

�  Correspond to intuition? NO!

�  Need rank-sensitive measures

Rank-specific P & R

Rank-specific P & R
�  Precisionrank: based on fraction of reldocs at rank

�  Recallrank: similarly

Rank-specific P & R
�  Precisionrank: based on fraction of reldocs at rank

�  Recallrank: similarly

�  Note: Recall is non-decreasing; Precision varies

Rank-specific P & R
�  Precisionrank: based on fraction of reldocs at rank

�  Recallrank: similarly

�  Note: Recall is non-decreasing; Precision varies

�  Issue: too many numbers; no holistic view

Rank-specific P & R
�  Precisionrank: based on fraction of reldocs at rank

�  Recallrank: similarly

�  Note: Recall is non-decreasing; Precision varies

�  Issue: too many numbers; no holistic view
�  Typically, compute precision at 11 fixed levels of recall
�  Interpolated precision:

�  Can smooth variations in precision

IntPr ecision(r) =max
i>=r

Pr ecision(i)

Interpolated Precision

Comparing Systems
�  Create graph of precision vs recall

�  Averaged over queries

�  Compare graphs

Mean Average Precision
(MAP)

�  Traverse ranked document list:
�  Compute precision each time relevant doc found

Mean Average Precision
(MAP)

�  Traverse ranked document list:
�  Compute precision each time relevant doc found

�  Average precision up to some fixed cutoff

�  Rr: set of relevant documents at or above r

�  Precision(d) : precision at rank when doc d found

1
Rr

Pr ecisionr
d∈Rr

∑ (d)

Mean Average Precision
(MAP)

�  Traverse ranked document list:
�  Compute precision each time relevant doc found

�  Average precision up to some fixed cutoff

�  Rr: set of relevant documents at or above r

�  Precision(d) : precision at rank when doc d found

�  Mean Average Precision: 0.6
�  Compute average over all queries of these averages

1
Rr

Pr ecisionr
d∈Rr

∑ (d)

Mean Average Precision
(MAP)

�  Traverse ranked document list:
�  Compute precision each time relevant doc found

�  Average precision up to some fixed cutoff

�  Rr: set of relevant documents at or above r

�  Precision(d) : precision at rank when doc d found

�  Mean Average Precision: 0.6
�  Compute average of all queries of these averages

�  Precision-oriented measure

1
Rr

Pr ecisionr
d∈Rr

∑ (d)

Mean Average Precision
(MAP)

�  Traverse ranked document list:
�  Compute precision each time relevant doc found

�  Average precision up to some fixed cutoff
�  Rr: set of relevant documents at or above r
�  Precision(d) : precision at rank when doc d found

�  Mean Average Precision: 0.6
�  Compute average of all queries of these averages
�  Precision-oriented measure

�  Single crisp measure: common TREC Ad-hoc

1
Rr

Pr ecisionr
d∈Rr

∑ (d)

Roadmap
�  Retrieval systems

�  Improving document retrieval
�  Compression & Expansion techniques

�  Passage retrieval:
�  Contrasting techniques
�  Interactions with document retreival

Retrieval Systems
�  Three available systems

�  Lucene: Apache
�  Boolean systems with Vector Space Ranking
�  Provides basic CLI/API (Java, Python)

�  Indri/Lemur: Umass /CMU
�  Language Modeling system (best ad-hoc)
�  ‘Structured query language

�  Weighting,
�  Provides both CLI/API (C++,Java)

�  Managing Gigabytes (MG):
�  Straightforward VSM

Retrieval System Basics
�  Main components:

�  Document indexing
�  Reads document text

�  Performs basic analysis

�  Minimally – tokenization, stopping, case folding

�  Potentially stemming, semantics, phrasing, etc

�  Builds index representation

Retrieval System Basics
�  Main components:

�  Document indexing
�  Reads document text

�  Performs basic analysis
�  Minimally – tokenization, stopping, case folding
�  Potentially stemming, semantics, phrasing, etc

�  Builds index representation

�  Query processing and retrieval
�  Analyzes query (similar to document)

�  Incorporates any additional term weighting, etc

�  Retrieves based on query content
�  Returns ranked document list

Example (I/L)
�  indri-5.0/buildindex/IndriBuildIndex parameter_file

�  XML parameter file specifies:
�  Minimally:

�  Index: path to output

�  Corpus (+): path to corpus, corpus type

�  Optionally:
�  Stemmer, field information

�  indri-5.0/runquery/IndriRunQuery query_parameter_file -
count=1000 \

 -index=/path/to/index -trecFormat=true > result_file

 Parameter file: formatted queries w/query #

Lucene
�  Collection of classes to support IR

�  Less directly linked to TREC
�  E.g. query, doc readers

�  IndexWriter class
�  Builds, extends index
�  Applies analyzers to content

�  SimpleAnalyzer: stops, case folds, tokenizes
�  Also Stemmer classes, other langs, etc

�  Classes to read, search, analyze index

�  QueryParser parses query (fields, boosting, regexp)

