# Strategies for QA \& Information Retrieval 

Ling573
NLP Systems and Applications
April 10, 2014

## Roadmap

- Shallow and Deep processing for Q/A
- AskMSR, ARANEA: Shallow processing Q/A
- Wrap-up
- PowerAnswer-2: Deep processing Q/A
- Information Retrieval:
- Problem:
- Matching Topics and Documents
- Methods:
- Vector Space Model
- Retrieval evaluation


## Redundancy-based Answer Extraction

- Prior processing:
- Question formulation
- Web search
- Retrieve snippets - top 100
- N.grams:
- Generation
- Voting
- Filtering
- Combining
- Scoring
- Reranking


## N -gram Filtering

- Throws out 'blatant' errors
- Conservative or aggressive?
- Conservative: can't recover error
- Question-type-neutral filters:
- Exclude if begin/end with stopword
- Exclude if contain words from question, except
- 'Focus words’ : e.g. units
- Question-type-specific filters:
- 'how far', 'how fast': exclude if no numeric
- 'who','where': exclude if not NE (first \& last caps)


## N -gram Filtering

- Closed-class filters:
- Exclude if not members of an enumerable list


## N -gram Filtering

- Closed-class filters:
- Exclude if not members of an enumerable list
- E.g. 'what year ' -> must be acceptable date year


## N -gram Filtering

- Closed-class filters:
- Exclude if not members of an enumerable list
- E.g. 'what year ' -> must be acceptable date year
- Example after filtering:
- Who was the first person to run a sub-four-minute mile?

| Candidate | Score |
| :--- | :--- |
| Bannister | 137 |
| Roger | 114 |
| Roger Bannister | 103 |
| English | 26 |
| $\ldots$ | $\ldots$ |

## N-gram Combining

- Current scoring favors longer or shorter spans?


## N -gram Combining

- Current scoring favors longer or shorter spans?
- E.g. Roger or Bannister or Roger Bannister or Mr.....


## N -gram Combining

- Current scoring favors longer or shorter spans?
- E.g. Roger or Bannister or Roger Bannister or Mr.....
- Bannister pry highest - occurs everywhere R.B. +
- Generally, good answers longer (up to a point)


## N -gram Combining

- Current scoring favors longer or shorter spans?
- E.g. Roger or Bannister or Roger Bannister or Mr.....
- Bannister pry highest - occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $S_{c}+=\Sigma S_{t}$, where $t$ is unigram in $c$
- Possible issues:


## N -gram Combining

- Current scoring favors longer or shorter spans?
- E.g. Roger or Bannister or Roger Bannister or Mr.....
- Bannister pry highest - occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $S_{c}+=\Sigma S_{t}$, where $t$ is unigram in c
- Possible issues:
- Bad units: Roger Bannister was


## N -gram Combining

- Current scoring favors longer or shorter spans?
- E.g. Roger or Bannister or Roger Bannister or Mr.....
- Bannister pry highest - occurs everywhere R.B. +
- Generally, good answers longer (up to a point)
- Update score: $\mathrm{S}_{\mathrm{c}}+=\Sigma \mathrm{S}_{\mathrm{t}}$, where t is unigram in c
- Possible issues:
- Bad units: Roger Bannister was - blocked by filters
- Also, increments score so long bad spans lower
- Improves significantly


## N-gram Scoring

- Not all terms created equal


## N-gram Scoring

- Not all terms created equal
- Usually answers highly specific
- Also disprefer non-units
- Solution


## N-gram Scoring

- Not all terms created equal
- Usually answers highly specific
- Also disprefer non-units
- Solution: IDF-based scoring
$S_{c}=S_{c}$ * average_unigram_idf


## N-gram Scoring

- Not all terms created equal
- Usually answers highly specific
- Also disprefer non-units
- Solution: IDF-based scoring $\mathrm{S}_{\mathrm{c}}=\mathrm{S}_{\mathrm{c}}$ * average_unigram_idf

After combining

| Candidate | Score |
| :--- | :--- |
| Roger Bannister | 354 |
| Sir Roger Gilbert Bannister | 286 |
| Sir Roger Bannister | 280 |
| Bannister Sir Roger | 278 |
| $\ldots$ | $\ldots$ |

## N-gram Scoring

- Not all terms created equal
- Usually answers highly specific
- Also disprefer non-units
- Solution: IDF-based scoring $\mathrm{S}_{\mathrm{c}}=\mathrm{S}_{\mathrm{c}}$ * average_unigram_idf

After combining
After scoring

| Candidate | Score | Candidate | Score |
| :--- | :--- | :--- | :--- |
| Roger Bannister | 354 | Roger Bannister | 2377 |
| Sir Roger Gilbert Bannister | 286 | Englishman Roger Bannister | 1853 |
| Sir Roger Bannister | 280 | Sir Roger Gilbert Bannister | 1775 |
| Bannister Sir Roger | 278 | Sir Roger Bannister | 1768 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

## N-gram Reranking

- Promote best answer candidates:


## N-gram Reranking

- Promote best answer candidates:
- Filter any answers not in at least two snippets


## N-gram Reranking

- Promote best answer candidates:
- Filter any answers not in at least two snippets
- Use answer type specific forms to raise matches
- E.g. 'where' -> boosts ‘city, state’
- Small improvement depending on answer type


## Summary

- Redundancy-based approaches
- Leverage scale of web search
- Take advantage of presence of 'easy' answers on web
- Exploit statistical association of question/answer text


## Summary

- Redundancy-based approaches
- Leverage scale of web search
- Take advantage of presence of 'easy' answers on web
- Exploit statistical association of question/answer text
- Increasingly adopted:
- Good performers independently for QA
- Provide significant improvements in other systems
- Esp. for answer filtering


## Summary

- Redundancy-based approaches
- Leverage scale of web search
- Take advantage of presence of 'easy' answers on web
- Exploit statistical association of question/answer text
- Increasingly adopted:
- Good performers independently for QA
- Provide significant improvements in other systems
- Esp. for answer filtering
- Does require some form of 'answer projection'
- Map web information to TREC document


## Deliverable \#2

- Baseline end-to-end Q/A system:
- Redundancy-based with answer projection also viewed as
- Retrieval with web-based boosting
- Implementation: Main components
- (Suggested) Basic redundancy approach
- Basic retrieval approach (IR next lecture)


## Data

- Questions:
- XML formatted questions and question series
- Answers:
- Answer 'patterns' with evidence documents
- Training/Devtext/Evaltest:
- Training: Thru 2005
- Devtest: 2006
- Held-out: ...
- Will be in /dropbox directory on patas
- Documents:
- AQUAINT news corpus data with minimal markup


## PowerAnswer2

- Language Computer Corp.
- Lots of UT Dallas affiliates
- Tasks: factoid questions
- Major novel components:
- Web-boosting of results
- COGEX logic prover
- Temporal event processing
- Extended semantic chains
- Results: Best factoid system: 0.713 (vs 0.666, 03.329)


## Challenges: Co-reference

- Single, basic referent:

| Target 27- Jennifer Capriati |  |
| :--- | :--- |
| Q27.2 | Who is her coach? |
| Q27.3 | Where does she live? |

## Challenges: Co-reference

- Single, basic referent:

| Target 27 - Jennifer Capriati |  |
| :--- | :--- |
| Q27.2 | Who is her coach? |
| Q27.3 | Where does she live? |

- Multiple possible antecedents:
- Depends on previous correct answers

| Target 136-Shiite |  |
| :--- | :--- |
| Q136.1 | Who was the first Imam of the Shiite sect of Is- <br> Q13m? |
| Q136.2 | Where is his tomb? |
| What was this person's relationship to the |  |
| Q136.4 | Prophet Mohammad? <br> Qho was the third Imam of Shiite Muslims? |

## Challenges: Events

- Event answers:
- Not just nominal concepts


## Challenges: Events

- Event answers:
- Not just nominal concepts
- Nominal events:
- Preakness 1998


## Challenges: Events

- Event answers:
- Not just nominal concepts
- Nominal events:
- Preakness 1998
- Complex events:
- Plane clips cable wires in Italian resort


## Challenges: Events

- Event answers:
- Not just nominal concepts
- Nominal events:
- Preakness 1998
- Complex events:
- Plane clips cable wires in Italian resort
- Establish question context, constraints


## Handling Question Series

- Given target and series, how deal with reference?


## Handling Question Series

- Given target and series, how deal with reference?
- Shallowest approach:
- Concatenation:
- Add the 'target' to the question


## Handling Question Series

- Given target and series, how deal with reference?
- Shallowest approach:
- Concatenation:
- Add the 'target' to the question
- Shallow approach:
- Replacement:
- Replace all pronouns with target


## Handling Question Series

- Given target and series, how deal with reference?
- Shallowest approach:
- Concatenation:
- Add the 'target' to the question
- Shallow approach:
- Replacement:
- Replace all pronouns with target
- Least shallow approach:
- Heuristic reference resolution


## Question Series Results

- No clear winning strategy


## Question Series Results

- No clear winning strategy
- All largely about the target
- So no big win for anaphora resolution
- If using bag-of-words features in search, works fine


## Question Series Results

- No clear winning strategy
- All largely about the target
- So no big win for anaphora resolution
- If using bag-of-words features in search, works fine
- 'Replacement’ strategy can be problematic
- E.g. Target=Nirvana:
- What is their biggest hit?


## Question Series Results

- No clear winning strategy
- All largely about the target
- So no big win for anaphora resolution
- If using bag-of-words features in search, works fine
- 'Replacement’ strategy can be problematic
- E.g. Target=Nirvana:
- What is their biggest hit?
- When was the band formed?


## Question Series Results

- No clear winning strategy
- All largely about the target
- So no big win for anaphora resolution
- If using bag-of-words features in search, works fine
- 'Replacement’ strategy can be problematic
- E.g. Target=Nirvana:
- What is their biggest hit?
- When was the band formed?
- Wouldn't replace 'the band'


## Question Series Results

- No clear winning strategy
- All largely about the target
- So no big win for anaphora resolution
- If using bag-of-words features in search, works fine
- 'Replacement’ strategy can be problematic
- E.g. Target=Nirvana:
- What is their biggest hit?
- When was the band formed?
- Wouldn't replace 'the band'
- Most teams concatenate


## PowerAnswer-2

- Factoid QA system:



## PowerAnswer-2

- Standard main components:
- Question analysis, passage retrieval, answer processing


## PowerAnswer-2

- Standard main components:
- Question analysis, passage retrieval, answer processing
- Web-based answer boosting


## PowerAnswer-2

- Standard main components:
- Question analysis, passage retrieval, answer processing
- Web-based answer boosting
- Complex components:


## PowerAnswer-2

- Standard main components:
- Question analysis, passage retrieval, answer processing
- Web-based answer boosting
- Complex components:
- COGEX abductive prover
- Word knowledge, semantics:
- Extended WordNet, etc
- Temporal processing


## Web-Based Boosting

- Create search engine queries from question


## Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
- Cf. Dumais et al - AskMSR; Lin - ARANEA


## Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
- Cf. Dumais et al - AskMSR; Lin - ARANEA
- Increase weight on TREC candidates that match
- Higher weight if higher frequency


## Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
- Cf. Dumais et al - AskMSR; Lin - ARANEA
- Increase weight on TREC candidates that match
- Higher weight if higher frequency
- Intuition:
- Common terms in search likely to be answer
- QA answer search too focused on query terms


## Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
- Cf. Dumais et al - AskMSR; Lin - ARANEA
- Increase weight on TREC candidates that match
- Higher weight if higher frequency
- Intuition:
- Common terms in search likely to be answer
- QA answer search too focused on query terms
- Reweighting improves
- Web-boosting improves significantly: $20 \%$


## Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
- Tokenization, POS tagging, NE recognition, Preprocess


## Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
- Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
- Focused on nouns, verbs, and particles
- Attachment


## Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
- Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
- Focused on nouns, verbs, and particles
- Attachment
- Coreference resolution links entity references


## Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
- Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
- Focused on nouns, verbs, and particles
- Attachment
- Coreference resolution links entity references
- Translate to full logical form
- As close as possible to syntax


## Syntax to Logical Form



## Syntax to Logical Form



## Syntax to Logical Form



## Deep Processing: Answer Selection

- Cogex prover:
- Applies abductive inference
- Chain of reasoning to justify the answer given the question
- Mix of logical and lexical inference


## Deep Processing: Answer Selection

- Cogex prover:
- Applies abductive inference
- Chain of reasoning to justify the answer given the question
- Mix of logical and lexical inference
- Main mechanism: Lexical chains:
- Bridge gap in lexical choice b/t Q and A
- Improve retrieval and answer selection


## Deep Processing: Answer Selection

- Cogex prover:
- Applies abductive inference
- Chain of reasoning to justify the answer given the question
- Mix of logical and lexical inference
- Main mechanism: Lexical chains:
- Bridge gap in lexical choice b/t Q and A
- Improve retrieval and answer selection
- Create connections between synsets through topicality


## Deep Processing: Answer Selection

- Cogex prover:
- Applies abductive inference
- Chain of reasoning to justify the answer given the question
- Mix of logical and lexical inference
- Main mechanism: Lexical chains:
- Bridge gap in lexical choice b/t Q and A
- Improve retrieval and answer selection
- Create connections between synsets through topicality
- Q: When was the internal combustion engine invented?
- A: The first internal-combustion engine was built in 1867.


## Deep Processing: Answer Selection

- Cogex prover:
- Applies abductive inference
- Chain of reasoning to justify the answer given the question
- Mix of logical and lexical inference
- Main mechanism: Lexical chains:
- Bridge gap in lexical choice b/t Q and A
- Improve retrieval and answer selection
- Create connections between synsets through topicality
- Q: When was the internal combustion engine invented?
- A: The first internal-combustion engine was built in 1867.
- Yields $12 \%$ improvement in accuracy!


## Example

- How hot does the inside of an active volcano get?
- Get(TEMPERATURE, inside(active(volcano)))
- "lava fragments belched out of the mountain were as hot as 300 degrees Fahrenheit"
- Fragments(lava,TEMPERATURE(degrees(300)), belched(out, mountain))
- Volcano ISA mountain; lava ISPARTOF volcano
- Lava inside volcano
- Fragments of lava HAVEPROPERTIESOF lava

Knowledge derived from WordNet to proof 'axioms'

Ex. Due to D. Jurafsky

## Temporal Processing

- $16 \%$ of factoid questions include time reference


## Temporal Processing

- $16 \%$ of factoid questions include time reference
- Index documents by date: absolute, relative


## Temporal Processing

- $16 \%$ of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
- Store as triples of (S, E1, E2)
- $S$ is temporal relation signal - e.g. during, after


## Temporal Processing

- $16 \%$ of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
- Store as triples of (S, E1, E2)
- S is temporal relation signal - e.g. during, after
- Answer selection:
- Prefer passages matching Question temporal constraint
- Discover events related by temporal signals in Q \& As
- Perform temporal unification; boost good As


## Temporal Processing

- $16 \%$ of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
- Store as triples of (S, E1, E2)
- $S$ is temporal relation signal - e.g. during, after
- Answer selection:
- Prefer passages matching Question temporal constraint
- Discover events related by temporal signals in Q \& As
- Perform temporal unification; boost good As
- Improves only by $2 \%$
- Mostly captured by surface forms


## Results

|  | PowerAnswer-2 |
| :--- | :---: |
| Factoid | 0.713 |
| List | 0.468 |
| Other | 0.228 |
| Overall | 0.534 |

Table 2: Results in the main task.

## Matching Topics and Documents

- Two main perspectives:
- Pre-defined, fixed, finite topics:
- "Text Classification"


## Matching Topics and Documents

- Two main perspectives:
- Pre-defined, fixed, finite topics:
- "Text Classification"
- Arbitrary topics, typically defined by statement of information need (aka query)
- "Information Retrieval"
- Ad-hoc retrieval


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval
- Typically: Newspaper story, encyclopedia entry


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval
- Typically: Newspaper story, encyclopedia entry
- Alternatively: paragraphs, sentences; web page, site


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval
- Typically: Newspaper story, encyclopedia entry
- Alternatively: paragraphs, sentences; web page, site
- Query:
- Specification of information need


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval
- Typically: Newspaper story, encyclopedia entry
- Alternatively: paragraphs, sentences; web page, site
- Query:
- Specification of information need
- Terms:
- Minimal units for query/document


## Information Retrieval Components

- Document collection:
- Used to satisfy user requests, collection of:
- Documents:
- Basic unit available for retrieval
- Typically: Newspaper story, encyclopedia entry
- Alternatively: paragraphs, sentences; web page, site
- Query:
- Specification of information need
- Terms:
- Minimal units for query/document
- Words, or phrases


## Information Retrieval Architecture



## Vector Space Model

- Basic representation:
- Document and query semantics defined by their terms


## Vector Space Model

- Basic representation:
- Document and query semantics defined by their terms
- Typically ignore any syntax
- Bag-of-words (or Bag-of-terms)
- Dog bites man == Man bites dog


## Vector Space Model

- Basic representation:
- Document and query semantics defined by their terms
- Typically ignore any syntax
- Bag-of-words (or Bag-of-terms)
- Dog bites man == Man bites dog
- Represent documents and queries as
- Vectors of term-based features


## Vector Space Model

- Basic representation:
- Document and query semantics defined by their terms
- Typically ignore any syntax
- Bag-of-words (or Bag-of-terms)
- Dog bites man == Man bites dog
- Represent documents and queries as
- Vectors of term-based features
- E.g. $\vec{d}_{j}=\left(w_{1, j}, w_{2, j}, \ldots, w_{N, j}\right) ; \vec{q}_{k}=\left(w_{1, k}, w_{2, k}, \ldots, w_{N, k}\right)$
- $N$ :


## Vector Space Model

- Basic representation:
- Document and query semantics defined by their terms
- Typically ignore any syntax
- Bag-of-words (or Bag-of-terms)
- Dog bites man == Man bites dog
- Represent documents and queries as
- Vectors of term-based features
- E.g. $\vec{d}_{j}=\left(w_{1, j}, w_{2, j}, \ldots, w_{N, j}\right) ; \vec{q}_{k}=\left(w_{1, k}, w_{2, k}, \ldots, w_{N, k}\right)$
- N :
- \# of terms in vocabulary of collection: Problem?


## Representation

- Solution 1:
- Binary features:
- $w=1$ if term present, 0 otherwise
- Similarity:
- Number of terms in common
- Dot product

$$
\operatorname{sim}\left(\vec{q}_{k}, \vec{d}_{j}\right)=\sum_{i=1}^{N} w_{i, k} w_{i, j}
$$

- Issues?


## VSM Weights

- What should the weights be?
- "Aboutness"
- To what degree is this term what document is about?
- Within document measure
- Term frequency (tf): \# occurrences of tin doc j
- Examples:
- Terms: chicken, fried, oil, pepper
- D1: fried chicken recipe: $(8,2,7,4)$
- D2: poached chick recipe: (6, 0, 0, 0)
- Q: fried chicken: (1, 1, 0, 0)


## Vector Space Model (II)

- Documents \& queries:
- Document collection: term-by-document matrix

$$
A=\left(\begin{array}{ll}
8 & 6 \\
2 & 0 \\
7 & 0 \\
4 & 0
\end{array}\right)
$$

- View as vector in multidimensional space
- Nearby vectors are related
- Normalize for vector length


## Vector Space Model



## Vector Similarity Computation

- Normalization:
- Improve over dot product
- Capture weights
- Compensate for document length
- :


## Vector Similarity Computation

- Normalization:
- Improve over dot product
- Capture weights
- Compensate for document length
- Cosine similarity

$$
\operatorname{sim}\left(\vec{q}_{k}, \vec{a}_{j}\right)=\frac{\sum_{i=1}^{N} w_{i, k} w_{i, j}}{\sqrt{\sum_{i=1}^{N} w_{i, k}^{2} \sqrt{\sum_{i=1}^{N} w_{i, j}^{2}}}}
$$

## Vector Similarity Computation

- Normalization:
- Improve over dot product
- Capture weights
- Compensate for document length
- Cosine similarity

$$
\operatorname{sim}\left(\vec{q}_{k}, \vec{a}_{j}\right)=\frac{\sum_{i=1}^{N} w_{i, k} w_{i, j}}{\sqrt{\sum_{i=1}^{N} w_{i, k}^{2} \sqrt{\sum_{i=1}^{N} w_{i, j}^{2}}}}
$$

- Identical vectors:


## Vector Similarity Computation

- Normalization:
- Improve over dot product
- Capture weights
- Compensate for document length
- Cosine similarity

$$
\operatorname{sim}\left(\vec{q}_{k}, \vec{a}_{j}\right)=\frac{\sum_{i=1}^{N} w_{i, k} w_{i, j}}{\sqrt{\sum_{i=1}^{N} w_{i, k}^{2} \sqrt{\sum_{i=1}^{N} w_{i, j}^{2}}}}
$$

- Identical vectors: 1
- No overlap:


## Vector Similarity Computation

- Normalization:
- Improve over dot product
- Capture weights
- Compensate for document length
- Cosine similarity

$$
\operatorname{sim}\left(\vec{q}_{k}, \vec{a}_{j}\right)=\frac{\sum_{i=1}^{N} w_{i, k} w_{i, j}}{\sqrt{\sum_{i=1}^{N} w_{i, k}^{2} \sqrt{\sum_{i=1}^{N} w_{i, j}^{2}}}}
$$

- Identical vectors: 1
- No overlap: 0


## Term Weighting Redux

- "Aboutness"
- Term frequency (tf): \# occurrences of t in doc j


## Term Weighting Redux

- "Aboutness"
- Term frequency (tf): \# occurrences of $t$ in doc $j$
- Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6


## Term Weighting Redux

- "Aboutness"
- Term frequency (tf): \# occurrences of t in doc j
- Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6
- Question: what about ‘Representative’ vs 'Giffords'?


## Term Weighting Redux

- "Aboutness"
- Term frequency (tf): \# occurrences of $t$ in doc $j$
- Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6
- Question: what about ‘Representative’ vs ‘Giffords’?
- "Specificity"
- How surprised are you to see this term?
- Collection frequency
- Inverse document frequency (idf):

$$
i d f_{i}=\log \left(\frac{N}{n_{i}}\right)
$$

## Term Weighting Redux

- "Aboutness"
- Term frequency (tf): \# occurrences of t in doc j
- Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6
- Question: what about ‘Representative’ vs ‘Giffords’?
- "Specificity"
- How surprised are you to see this term?
- Collection frequency
- Inverse document frequency (idf):

$$
i d f_{i}=\log \left(\frac{N}{n_{i}}\right) \quad w_{i, j}=t f_{i, j} \times i d f_{i}
$$

## Tf-idf Similarity

- Variants of tf-idf prevalent in most VSM

$$
\operatorname{sim}(\vec{q}, \vec{d})=\frac{\sum_{w \in q, d} t f_{w, q} t f_{w, d}\left(i d f_{w}\right)^{2}}{\sqrt{\sum_{q_{i} \in q}\left(t f_{q_{i}, q} i d f_{q_{i}}\right)^{2}} \sqrt{\sum_{d_{i} \in d}\left(t f_{d_{i}, d} i d f_{d_{i}}\right)^{2}}}
$$

## Term Selection

- Selection:
- Some terms are truly useless


## Term Selection

- Selection:
- Some terms are truly useless
- Too frequent:
- Appear in most documents


## Term Selection

- Selection:
- Some terms are truly useless
- Too frequent:
- Appear in most documents
- Little/no semantic content


## Term Selection

- Selection:
- Some terms are truly useless
- Too frequent:
- Appear in most documents
- Little/no semantic content
- Function words
- E.g. the, a, and,...


## Term Selection

- Selection:
- Some terms are truly useless
- Too frequent:
- Appear in most documents
- Little/no semantic content
- Function words
- E.g. the, a, and,...
- Indexing inefficiency:
- Store in inverted index:
- For each term, identify documents where it appears
- 'the': every document is a candidate match


## Term Selection

- Selection:
- Some terms are truly useless
- Too frequent:
- Appear in most documents
- Little/no semantic content
- Function words
- E.g. the, a, and,...
- Indexing inefficiency:
- Store in inverted index:
- For each term, identify documents where it appears
- 'the': every document is a candidate match
- Remove 'stop words' based on list
- Usually document-frequency based


## Term Creation

- Too many surface forms for same concepts


## Term Creation

- Too many surface forms for same concepts
- E.g. inflections of words: verb conjugations, plural
- Process, processing, processed
- Same concept, separated by inflection


## Term Creation

- Too many surface forms for same concepts
- E.g. inflections of words: verb conjugations, plural
- Process, processing, processed
- Same concept, separated by inflection
- Stem terms:
- Treat all forms as same underlying
- E.g., 'processing’ -> 'process’; 'Beijing’ -> 'Beije’
- Issues:


## Term Creation

- Too many surface forms for same concepts
- E.g. inflections of words: verb conjugations, plural
- Process, processing, processed
- Same concept, separated by inflection
- Stem terms:
- Treat all forms as same underlying
- E.g., 'processing’ -> 'process’; 'Beijing’ -> ‘Beije’
- Issues:
- Can be too aggressive
- AIDS, aids •> aid; stock, stocks, stockings -> stock


## Evaluating IR

- Basic measures: Precision and Recall


## Evaluating IR

- Basic measures: Precision and Recall
- Relevance judgments:
- For a query, returned document is relevant or non-relevant
- Typically binary relevance: 0/1


## Evaluating IR

- Basic measures: Precision and Recall
- Relevance judgments:
- For a query, returned document is relevant or non-relevant
- Typically binary relevance: 0/1
- T: returned documents; U: true relevant documents
- R: returned relevant documents
- N : returned non-relevant documents


## Evaluating IR

- Basic measures: Precision and Recall
- Relevance judgments:
- For a query, returned document is relevant or non-relevant
- Typically binary relevance: 0/1
- T: returned documents; U: true relevant documents
- R: returned relevant documents
- N : returned non-relevant documents

$$
\operatorname{Pr} \text { ecision }=\frac{|R|}{|T|} ; \operatorname{Re} \text { call }=\frac{|R|}{|U|}
$$

## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: ‘best’ first


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:
- In first 10 positions?


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:
- In first 10 positions?
- In last 10 positions?


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:
- In first 10 positions?
- In last 10 positions?
- Score by precision and recall - which is better?


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:
- In first 10 positions?
- In last 10 positions?
- Score by precision and recall - which is better?
- Identical !!!
- Correspond to intuition? NO!


## Evaluating IR

- Issue: Ranked retrieval
- Return top 1K documents: 'best’ first
- 10 relevant documents returned:
- In first 10 positions?
- In last 10 positions?
- Score by precision and recall - which is better?
- Identical !!!
- Correspond to intuition? NO!
- Need rank-sensitive measures


## Rank-specific P \& R

| Rank | Judgment | Precision $_{\text {Rank }}$ | Recall $_{\text {Rank }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | R | 1.0 | .11 |
| 2 | N | .50 | .11 |
| 3 | R | .66 | .22 |
| 4 | N | .50 | .22 |
| 5 | R | .60 | .33 |
| 6 | R | .66 | .44 |
| 7 | N | .57 | .44 |
| 8 | R | .63 | .55 |
| 9 | N | .55 | .55 |
| 10 | N | .50 | .55 |
| 11 | R | .55 | .66 |
| 12 | N | .50 | .66 |
| 13 | N | .46 | .66 |
| 14 | N | .43 | .66 |
| 15 | R | .47 | .77 |
| 16 | N | .44 | .77 |
| 17 | N | .44 | .77 |
| 18 | R | .44 | .88 |
| 19 | N | .42 | .88 |
| 20 | N | .40 | .88 |
| 21 | N | .38 | .88 |
| 22 | N | .36 | .88 |
| 23 | N | .35 | .88 |
| 24 | N | .33 | .88 |
| 25 | R | .36 | 1.0 |

## Rank-specific P \& R

- Precision ${ }_{\text {rank }}$ : based on fraction of reldocs at rank
- Recall ${ }_{\text {rank }}$ : similarly


## Rank-specific P \& R

- Precision ${ }_{\text {rank }}$ : based on fraction of reldocs at rank
- Recall ${ }_{\text {rank }}$ : similarly
- Note: Recall is non-decreasing; Precision varies


## Rank-specific P \& R

- Precision ${ }_{\text {rank }}$ : based on fraction of reldocs at rank
- Recall ${ }_{\text {rank }}$ : similarly
- Note: Recall is non-decreasing; Precision varies
- Issue: too many numbers; no holistic view


## Rank-specific P \& R

- Precision ${ }_{\text {rank }}$ : based on fraction of reldocs at rank
- Recall ${ }_{\text {rank }}$ : similarly
- Note: Recall is non-decreasing; Precision varies
- Issue: too many numbers; no holistic view
- Typically, compute precision at 11 fixed levels of recall
- Interpolated precision:

$$
\text { Int } \operatorname{Pr} \operatorname{ecision}(r)=\max _{i>=r} \operatorname{Pr} \operatorname{ecision}(i)
$$

- Can smooth variations in precision


## Interpolated Precision

| Interpolated Precision | Recall |
| :---: | :---: |
| 1.0 | 0.0 |
| 1.0 | .10 |
| .66 | .20 |
| .66 | .30 |
| .66 | .40 |
| .63 | .50 |
| .55 | .60 |
| .47 | .70 |
| .44 | .80 |
| .36 | .90 |
| .36 | 1.0 |

## Comparing Systems

- Create graph of precision vs recall
- Averaged over queries
- Compare graphs



## Mean Average Precision (MAP)

- Traverse ranked document list:
- Compute precision each time relevant doc found


## Mean Average Precision (MAP)

- Traverse ranked document list:
- Compute precision each time relevant doc found
- Average precision up to some fixed cutoff
- $R_{r}$ : set of relevant documents at or above $r$
- Precision(d) : precision at rank when doc d found

$$
\frac{1}{\left|R_{r}\right|} \sum_{d \in R_{r}} \operatorname{Pr} \operatorname{ecision}_{r}(d)
$$

## Mean Average Precision (MAP)

- Traverse ranked document list:
- Compute precision each time relevant doc found
- Average precision up to some fixed cutoff
- $R_{r}$ : set of relevant documents at or above $r$
- Precision(d) : precision at rank when doc d found

$$
\frac{1}{\left|R_{r}\right|} \sum_{d \in R_{r}} \operatorname{Pr} \text { ecision }_{r}(d)
$$

- Mean Average Precision: 0.6
- Compute average over all queries of these averages


## Mean Average Precision (MAP)

- Traverse ranked document list:
- Compute precision each time relevant doc found
- Average precision up to some fixed cutoff
- $R_{r}$ : set of relevant documents at or above $r$
- Precision(d) : precision at rank when doc d found

$$
\frac{1}{\left|R_{r}\right|} \sum_{d \in R_{r}} \operatorname{Pr} \text { ecision }_{r}(d)
$$

- Mean Average Precision: 0.6
- Compute average of all queries of these averages
- Precision-oriented measure


## Mean Average Precision (MAP)

- Traverse ranked document list:
- Compute precision each time relevant doc found
- Average precision up to some fixed cutoff
- $\mathrm{R}_{\mathrm{r}}$ : set of relevant documents at or above $r$
- Precision(d) : precision at rank when doc d found

$$
\frac{1}{\left|R_{r}\right|} \sum_{d \in R_{r}} \operatorname{Pr} \operatorname{ecision}_{r}(d)
$$

- Mean Average Precision: 0.6
- Compute average of all queries of these averages
- Precision-oriented measure
- Single crisp measure: common TREC Ad-hoc


## Roadmap

- Retrieval systems
- Improving document retrieval
- Compression \& Expansion techniques
- Passage retrieval:
- Contrasting techniques
- Interactions with document retreival


## Retrieval Systems

- Three available systems
- Lucene: Apache
- Boolean systems with Vector Space Ranking
- Provides basic CLI/API (Java, Python)
- Indri/Lemur: Umass /CMU
- Language Modeling system (best ad-hoc)
- 'Structured query language
- Weighting,
- Provides both CLI/API (C++,Java)
- Managing Gigabytes (MG):
- Straightforward VSM


## Retrieval System Basics

- Main components:
- Document indexing
- Reads document text
- Performs basic analysis
- Minimally - tokenization, stopping, case folding
- Potentially stemming, semantics, phrasing, etc
- Builds index representation


## Retrieval System Basics

- Main components:
- Document indexing
- Reads document text
- Performs basic analysis
- Minimally - tokenization, stopping, case folding
- Potentially stemming, semantics, phrasing, etc
- Builds index representation
- Query processing and retrieval
- Analyzes query (similar to document)
- Incorporates any additional term weighting, etc
- Retrieves based on query content
- Returns ranked document list


## Example (I/L)

- indri-5.0/buildindex/IndriBuildIndex parameter_file - XML parameter file specifies:
- Minimally:
- Index: path to output
- Corpus (+): path to corpus, corpus type
- Optionally:
- Stemmer, field information
- indri-5.0/runquery/IndriRunQuery query_parameter_file . count=1000
-index=/path/to/index -trecFormat=true > result_file
Parameter file: formatted queries w/query \#


## Lucene

- Collection of classes to support IR
- Less directly linked to TREC
- E.g. query, doc readers
- IndexWriter class
- Builds, extends index
- Applies analyzers to content
- SimpleAnalyzer: stops, case folds, tokenizes
- Also Stemmer classes, other langs, etc
- Classes to read, search, analyze index
- QueryParser parses query (fields, boosting, regexp)

