Strategies for QA & Information Retrieval

Ling573
NLP Systems and Applications
April 10, 2014
Roadmap

- Shallow and Deep processing for Q/A
 - AskMSR, ARANEA: Shallow processing Q/A
 - Wrap-up
 - PowerAnswer-2: Deep processing Q/A

- Information Retrieval:
 - Problem:
 - Matching Topics and Documents
 - Methods:
 - Vector Space Model
 - Retrieval evaluation
Redundancy-based Answer Extraction

- Prior processing:
 - Question formulation
 - Web search
 - Retrieve snippets – top 100

- N-grams:
 - Generation
 - Voting
 - Filtering
 - Combining
 - Scoring
 - Reranking
N-gram Filtering

- Throws out ‘blatant’ errors
 - Conservative or aggressive?
 - Conservative: can’t recover error

- Question-type-neutral filters:
 - Exclude if begin/end with stopword
 - Exclude if contain words from question, except
 - ‘Focus words’: e.g. units

- Question-type-specific filters:
 - ‘how far’, ‘how fast’: exclude if no numeric
 - ‘who’, ‘where’: exclude if not NE (first & last caps)
N-gram Filtering

- Closed-class filters:
 - Exclude if not members of an enumerable list
 - E.g. ‘what year ‘ -> must be acceptable date year

- Example after filtering:
 - Who was the first person to run a sub-four-minute mile?

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bannister</td>
<td>137</td>
</tr>
<tr>
<td>Roger</td>
<td>114</td>
</tr>
<tr>
<td>Roger Bannister</td>
<td>103</td>
</tr>
<tr>
<td>English</td>
<td>26</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
N-gram Combining

• Current scoring favors longer or shorter spans?
 • E.g. Roger or Bannister or Roger Bannister or Mr.....
 • Bannister pry highest – occurs everywhere R.B. +

• Generally, good answers longer (up to a point)

• Update score: $S_c += \sum S_t$, where t is unigram in c

• Possible issues:
 • Bad units: Roger Bannister was – blocked by filters
 • Also, increments score so long bad spans lower

• Improves significantly
N-gram Scoring

- Not all terms created equal
 - Usually answers highly specific
 - Also disprefer non-units

- Solution: IDF-based scoring
 \[S_c = S_c \times \text{average_unigram_idf} \]

<table>
<thead>
<tr>
<th>After combining</th>
<th>After scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate</td>
<td>Score</td>
</tr>
<tr>
<td>Roger Bannister</td>
<td>354</td>
</tr>
<tr>
<td>Sir Roger Gilbert Bannister</td>
<td>286</td>
</tr>
<tr>
<td>Sir Roger Bannister</td>
<td>280</td>
</tr>
<tr>
<td>Bannister Sir Roger</td>
<td>278</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
N-gram Reranking

- Promote best answer candidates:
 - Filter any answers not in at least two snippets
 - Use answer type specific forms to raise matches
 - E.g. ‘where’ -> boosts ‘city, state’

- Small improvement depending on answer type
Summary

- Redundancy-based approaches
 - Leverage scale of web search
 - Take advantage of presence of ‘easy’ answers on web
 - Exploit statistical association of question/answer text

- Increasingly adopted:
 - Good performers independently for QA
 - Provide significant improvements in other systems
 - Esp. for answer filtering

- Does require some form of ‘answer projection’
 - Map web information to TREC document
Deliverable #2

• Baseline end-to-end Q/A system:
 • Redundancy-based with answer projection
 also viewed as
 • Retrieval with web-based boosting

• Implementation: Main components
 • (Suggested) Basic redundancy approach
 • Basic retrieval approach (IR next lecture)
Data

- Questions:
 - XML formatted questions and question series

- Answers:
 - Answer ‘patterns’ with evidence documents

- Training/Devtext/Evaltest:
 - Training: Thru 2005
 - Devtest: 2006
 - Held-out: ...

- Will be in /dropbox directory on patas

- Documents:
 - AQUAINT news corpus data with minimal markup
PowerAnswer2

- Language Computer Corp.
 - Lots of UT Dallas affiliates

- Tasks: factoid questions

- Major novel components:
 - Web-boosting of results
 - COGEX logic prover
 - Temporal event processing
 - Extended semantic chains

- Results: Best factoid system: 0.713 (vs 0.666, 0.329)
Challenges: Co-reference

- Single, basic referent:

- Multiple possible antecedents:
 - Depends on previous correct answers
Challenges: Events

- Event answers:
 - Not just nominal concepts
 - Nominal events:
 - Preakness 1998
 - Complex events:
 - Plane clips cable wires in Italian resort
- Establish question context, constraints
Handling Question Series

- Given target and series, how deal with reference?

- Shallowest approach:
 - Concatenation:
 - Add the ‘target’ to the question

- Shallow approach:
 - Replacement:
 - Replace all pronouns with target

- Least shallow approach:
 - Heuristic reference resolution
Question Series Results

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine

- ‘Replacement’ strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?
 - Wouldn’t replace ‘the band’

- Most teams concatenate
PowerAnswer-2

- Factoid QA system:
PowerAnswer-2

- Standard main components:
 - Question analysis, passage retrieval, answer processing
- Web-based answer boosting
- Complex components:
 - COGEX abductive prover
 - Word knowledge, semantics:
 - Extended WordNet, etc
 - Temporal processing
Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
 - Cf. Dumais et al - AskMSR; Lin – ARANEA
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - Common terms in search likely to be answer
 - QA answer search too focused on query terms
 - Reweighting improves
- Web-boosting improves significantly: 20%
Deep Processing: Query/Answer Formulation

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess

- Parsing creates syntactic representation:
 - Focused on nouns, verbs, and particles
 - Attachment

- Coreference resolution links entity references

- Translate to full logical form:
 - As close as possible to syntax
Syntax to Logical Form
Deep Processing:
Answer Selection

- Cogex prover:
 - Applies abductive inference
 - Chain of reasoning to justify the answer given the question
 - Mix of logical and lexical inference

- Main mechanism: Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection
 - Create connections between synsets through topicality

- Q: When was the internal combustion engine invented?
- A: The first internal-combustion engine was built in 1867.
 - Yields 12% improvement in accuracy!
Example

- How hot does the inside of an active volcano get?
- Get(TEMPERATURE, inside(active(volcano)))
- “lava fragments belched out of the mountain were as hot as 300 degrees Fahrenheit”
- Fragments(lava, TEMPERATURE(degrees(300)), belched(out, mountain))
- Volcano ISA mountain; lava ISPARTOF volcano
- Lava inside volcano
- Fragments of lava HAVEPROPERTIESOF lava

Knowledge derived from WordNet to proof ‘axioms’

Ex. Due to D. Jurafsky
Temporal Processing

- 16% of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
 - Store as triples of (S, E1, E2)
 - S is temporal relation signal – e.g. during, after
- Answer selection:
 - Prefer passages matching Question temporal constraint
 - Discover events related by temporal signals in Q & As
 - Perform temporal unification; boost good As
- Improves only by 2%
 - Mostly captured by surface forms
Results

<table>
<thead>
<tr>
<th></th>
<th>PowerAnswer-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factoid</td>
<td>0.713</td>
</tr>
<tr>
<td>List</td>
<td>0.468</td>
</tr>
<tr>
<td>Other</td>
<td>0.228</td>
</tr>
<tr>
<td>Overall</td>
<td>0.534</td>
</tr>
</tbody>
</table>

Table 2: Results in the main task.