Information Retrieval

Ling573 NLP Systems & Applications April 15, 2014

Roadmap

- Information Retrieval
 - Vector Space Model
 - Term Selection & Weighting
 - Evaluation
 - Refinements: Query Expansion
 - Resource-based
 - Retrieval-based
 - Refinements: Passage Retrieval
 - Passage reranking

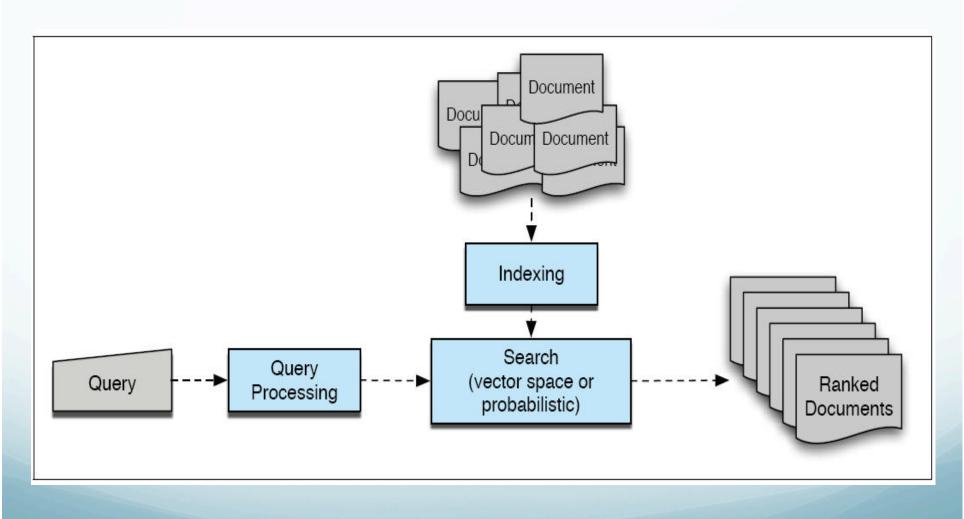
Matching Topics and Documents

- Two main perspectives:
 - Pre-defined, fixed, finite topics:
 - "Text Classification"
 - Arbitrary topics, typically defined by statement of information need (aka query)
 - "Information Retrieval"
 - Ad-hoc retrieval

Information Retrieval Components

- Document collection:
 - Used to satisfy user requests, collection of:
 - Documents:
 - Basic unit available for retrieval
 - Typically: Newspaper story, encyclopedia entry
 - Alternatively: paragraphs, sentences; web page, site
- Query:
 - Specification of information need
- Terms:
 - Minimal units for query/document
 - Words, or phrases

Information Retrieval Architecture



Vector Space Model

- Basic representation:
 - Document and query semantics defined by their terms
 - Typically ignore any syntax
 - Bag-of-words (or Bag-of-terms)
 - Dog bites man == Man bites dog
- Represent documents and queries as
 - Vectors of term-based features
 - E.g. $\vec{d}_j = (w_{1,j}, w_{2,j}, ..., w_{N,j}); \vec{q}_k = (w_{1,k}, w_{2,k}, ..., w_{N,k})$
 - N:
 - # of terms in vocabulary of collection: Problem?

Representation

- Solution 1:
 - Binary features:
 - w=1 if term present, 0 otherwise
 - Similarity:
 - Number of terms in common
 - Dot product $sim(\vec{q}_k, \vec{d}_j) = \sum_{i=1}^{N} w_{i,k} w_{i,j}$
- Issues?

VSM Weights

- What should the weights be?
- "Aboutness"
 - To what degree is this term what document is about?
 - Within document measure
 - Term frequency (tf): # occurrences of t in doc j
- Examples:
 - Terms: chicken, fried, oil, pepper
 - D1: fried chicken recipe: (8, 2, 7,4)
 - D2: poached chick recipe: (6, 0, 0, 0)
 - Q: fried chicken: (1, 1, 0, 0)

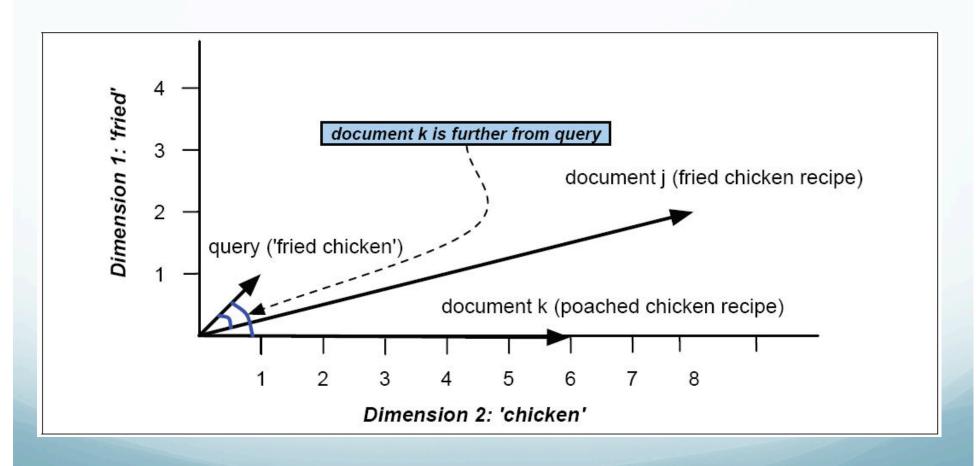
Vector Space Model (II)

- Documents & queries:
 - Document collection: term-by-document matrix

$$A = \begin{pmatrix} 8 & 6 \\ 2 & 0 \\ 7 & 0 \\ 4 & 0 \end{pmatrix}$$

- View as vector in multidimensional space
 - Nearby vectors are related
- Normalize for vector length

Vector Space Model



Vector Similarity Computation

- Normalization:
 - Improve over dot product
 - Capture weights
 - Compensate for document length

• Cosine similarity
$$sim(\vec{q}_{k}, \vec{d}_{j}) = \frac{\sum_{i=1}^{N} w_{i,k} w_{i,j}}{\sqrt{\sum_{i=1}^{N} w_{i,k}^{2} \sqrt{\sum_{i=1}^{N} w_{i,j}^{2}}}}$$

• Identical vectors:

Vector Similarity Computation

- Normalization:
 - Improve over dot product
 - Capture weights
 - Compensate for document length
 - Cosine similarity

$$sim(\vec{q}_k, \vec{d}_j) = \frac{\sum_{i=1}^{N} w_{i,k} w_{i,j}}{\sqrt{\sum_{i=1}^{N} w_{i,k}^2 \sqrt{\sum_{i=1}^{N} w_{i,j}^2}}}$$

- Identical vectors: 1
- No overlap: 0

Term Weighting Redux

- "Aboutness"
 - Term frequency (tf): # occurrences of t in doc j
 - Chicken: 6; Fried: 1 vs Chicken: 1; Fried: 6
- Question: what about 'Representative' vs 'Giffords'?
- "Specificity"
 - How surprised are you to see this term?
 - Collection frequency
 - Inverse document frequency (idf):

$$idf_i = \log(\frac{N}{n_i})$$
 $W_{i,j} = tf_{i,j} \times idf_i$

Tf-idf Similarity

Variants of tf-idf prevalent in most VSM

$$sim(q,d) = \frac{\sum_{w \in q,d} tf_{w,q} tf_{w,d} (idf_w)^2}{\sqrt{\sum_{q_i \in q} (tf_{q_i,q} idf_{q_i})^2} \sqrt{\sum_{d_i \in d} (tf_{d_i,d} idf_{d_i})^2}}$$

Term Selection

- Selection:
 - Some terms are truly useless
 - Too frequent:
 - Appear in most documents
 - Little/no semantic content
 - Function words
 - E.g. the, a, and,...
 - Indexing inefficiency:
 - Store in inverted index:
 - For each term, identify documents where it appears
 - 'the': every document is a candidate match
- Remove 'stop words' based on list
 - Usually document-frequency based

Term Creation

- Too many surface forms for same concepts
 - E.g. inflections of words: verb conjugations, plural
 - Process, processing, processed
 - Same concept, separated by inflection
- Stem terms:
 - Treat all forms as same underlying
 - E.g., 'processing' -> 'process'; 'Beijing' -> 'Beije'
- Issues:
 - Can be too aggressive
 - AIDS, aids -> aid; stock, stocks, stockings -> stock

Evaluating IR

- Basic measures: Precision and Recall
- Relevance judgments:
 - For a query, returned document is relevant or non-relevant
 - Typically binary relevance: 0/1
 - T: returned documents; U: true relevant documents
 - R: returned relevant documents
 - N: returned non-relevant documents

$$\Pr{ecision} = \frac{|R|}{|T|}; \operatorname{Re}{call} = \frac{|R|}{|U|}$$

Evaluating IR

- Issue: Ranked retrieval
 - Return top 1K documents: 'best' first
 - 10 relevant documents returned:
 - In first 10 positions?
 - In last 10 positions?
 - Score by precision and recall which is better?
 - Identical !!!
 - Correspond to intuition? NO!
- Need rank-sensitive measures

Rank-specific P & R

[-	Rank	Judgment	Precision _{Rank}	Recall _{Rank}	
	1	R	1.0	.11	
	2	N	.50	.11	
	3	R	.66	.22	
	4	N	.50	.22	
	5	R	.60	.33	
	6	R	.66	.44	
	7	N	.57	.44	
	8	R	.63	.55	
	9	N	.55	.55	
	10	N	.50	.55	
	11	R	.55	.66	
	12	N	.50	.66	
	13	N	.46	.66	
	14	N	.43	.66	
	15	R	.47	.77	
	16	N	.44	.77	
	17	N	.44	.77	
	18	R	.44	.88	
	19	N	.42	.88	
	20	N	.40	.88	
	21	N	.38	.88	
	22	N	.36	.88	
	23	N	.35	.88	
	24	N	.33	.88	
	25	R	.36	1.0	
	Name of the				

Rank-specific P & R

- Precision_{rank}: based on fraction of reldocs at rank
- Recall_{rank}: similarly
- Note: Recall is non-decreasing; Precision varies
- Issue: too many numbers; no holistic view
 - Typically, compute precision at 11 fixed levels of recall
 - Interpolated precision:

$$Int \Pr ecision(r) = \max_{i > = r} \Pr ecision(i)$$

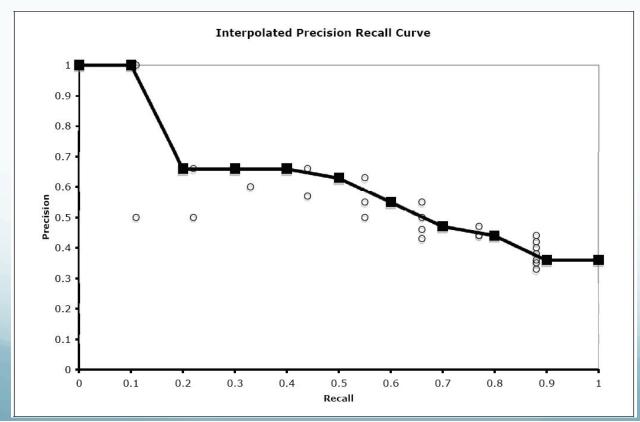
Can smooth variations in precision

Interpolated Precision

Interpolated Precisio	n Recall
1.0	0.0
1.0	.10
.66	.20
.66	.30
.66	.40
.63	.50
.55	.60
.47	.70
.44	.80
.36	.90
.36	1.0

Comparing Systems

- Create graph of precision vs recall
 - Averaged over queries
 - Compare graphs



Mean Average Precision (MAP)

- Traverse ranked document list:
 - Compute precision each time relevant doc found
 - Average precision up to some fixed cutoff
 - R_r: set of relevant documents at or above r
 - Precision(d): precision at rank when doc d found

$$\frac{1}{|R_r|} \sum_{d \in R_r} \operatorname{Pr} ecision_r(d)$$

- Mean Average Precision: 0.6
 - Compute average of all queries of these averages
 - Precision-oriented measure
- Single crisp measure: common TREC Ad-hoc