Question Classification

Ling573 NLP Systems and Applications April 25, 2013

Deliverable #3

• Posted: Code & results due May 10

- Focus: Question processing
 - Classification, reformulation, expansion, etc
- Additional: general improvement motivated by D#2

Question Classification: Li&Roth

Roadmap

• Motivation:

Question classification categorizes possible answers

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer

*Q: What Canadian city has the largest population?*Type?

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer
 - *Q: What Canadian city has the largest population?*
 - Type? -> City
 - Can ignore all non-city NPs

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer

Q: What Canadian city has the largest population?

- Type? -> City
- Can ignore all non-city NPs
- Provides information for type-specific answer selection
 - *Q: What is a prism?*
 - Type? ->

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer

Q: What Canadian city has the largest population?

- Type? -> City
- Can ignore all non-city NPs
- Provides information for type-specific answer selection
 - *Q: What is a prism?*
 - Type? -> Definition
 - Answer patterns include: 'A prism is...'

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?
 - Nearly impossible to create sufficient patterns
- Solution?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?
 - Nearly impossible to create sufficient patterns
- Solution?
 - Machine learning rich feature set

- Employ machine learning to categorize by answer type
 - Hierarchical classifier on semantic hierarchy of types
 - Coarse vs fine-grained
 - Up to 50 classes
 - Differs from text categorization?

- Employ machine learning to categorize by answer type
 - Hierarchical classifier on semantic hierarchy of types
 - Coarse vs fine-grained
 - Up to 50 classes
 - Differs from text categorization?
 - Shorter (much!)
 - Less information, but
 - Deep analysis more tractable

- Exploit syntactic and semantic information
 - Diverse semantic resources

- Exploit syntactic and semantic information
 - Diverse semantic resources
 - Named Entity categories
 - WordNet sense
 - Manually constructed word lists
 - Automatically extracted semantically similar word lists

- Exploit syntactic and semantic information
 - Diverse semantic resources
 - Named Entity categories
 - WordNet sense
 - Manually constructed word lists
 - Automatically extracted semantically similar word lists
- Results:
 - Coarse: 92.5%; Fine: 89.3%
 - Semantic features reduce error by 28%

Question Hierarchy

Class	#	Class	#
ABBREVIATION	18	term	19
abbreviation	2	vehicle	7
expression	16	word	0
DESCRIPTION	153	HUMAN	171
definition	126	group	24
description	13	individual	140
manner	7	title	4
reason	7	description	3
ENTITY	174	LOCATION	195
animal	27	city	44
body	5	country	21
color	12	mountain	5
creative	14	other	114
currency	8	state	11
disease/medicine	3	NUMERIC	289
event	6	code	1
food	7	count	22
instrument	1	date	146
lang	3	distance	38
letter	0	money	9
other	19	order	0
plant	7	other	24
product	9	period	18
religion	1	percent	7
sport	3	speed	9
substance	20	temp	7
symbol	2	vol.size	4
technique	1	weight	4

• Many manual approaches use only :

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but
 - Someone still has to label the data...
- Two step learning: (Winnow)
 - Same features in both cases

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but
 - Someone still has to label the data...
- Two step learning: (Winnow)
 - Same features in both cases
 - First classifier produces (a set of) coarse labels
 - Second classifier selects from fine-grained children of coarse tags generated by the previous stage
 - Select highest density classes above threshold

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation
- Words
 - Combined into ngrams

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation
- Words
 - Combined into ngrams
- Syntactic features:
 - Part-of-speech tags
 - Chunks
 - Head chunks : 1st N, V chunks after Q-word

• Q: Who was the first woman killed in the Vietnam War?

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] [in IN] [the DT] [Vietnam NNP] [War NNP] [? .]

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] {in IN] [the DT] [Vietnam NNP] [War NNP] [? .]
- Chunking: [NP Who] [VP was] [NP the first woman] [VP killed] [PP in] [NP the Vietnam War] ?

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] {in IN] [the DT] [Vietnam NNP] [War NNP] [? .]
- Chunking: [NP Who] [VP was] [NP the first woman] [VP killed] [PP in] [NP the Vietnam War] ?
- Head noun chunk: 'the first woman'

Semantic Features

• Treat analogously to syntax?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?
- A1: Explore different lexical semantic info sources
 - Differ in granularity, difficulty, and accuracy

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?
- A1: Explore different lexical semantic info sources
 - Differ in granularity, difficulty, and accuracy
 - Named Entities
 - WordNet Senses
 - Manual word lists
 - Distributional sense clusters

Tagging & Ambiguity

Augment each word with semantic category

- What about ambiguity?
 - E.g. 'water' as 'liquid' or 'body of water'

Tagging & Ambiguity

Augment each word with semantic category

• What about ambiguity?

- E.g. 'water' as 'liquid' or 'body of water'
- Don't disambiguate
 - Keep all alternatives
 - Let the learning algorithm sort it out
 - Why?

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...
- WordNet: IS-A hierarchy of senses
 - All senses of word + direct hyper/hyponyms

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...
- WordNet: IS-A hierarchy of senses
 - All senses of word + direct hyper/hyponyms
- Class-specific words
 - Manually derived from 5500 questions
 - E.g. Class: Food
 - {alcoholic, apple, beer, berry, breakfast brew butter candy cereal champagne cook delicious eat fat ..}
 - Class is semantic tag for word in the list

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words
 - Lists correspond to word senses
 - Water:
 - Sense 1: { oil gas fuel food milk liquid}
 - Sense 2: {air moisture soil heat area rain}
 - Sense 3: {waste sewage pollution runoff}

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words
 - Lists correspond to word senses
 - Water:
 - Sense 1: { oil gas fuel food milk liquid}
 - Sense 2: {air moisture soil heat area rain}
 - Sense 3: {waste sewage pollution runoff}
 - Treat head word as semantic category of words on list

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set
- Training:
 - 21.5K questions from TREC 8,9; manual; USC data
- Test:
 - 1K questions from TREC 10,11

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set
- Training:
 - 21.5K questions from TREC 8,9; manual; USC data
- Test:
 - 1K questions from TREC 10,11
- Measures: Accuracy and class-specific precision

Results

• Syntactic features only:

Classifier	Word	POS	Chunk	Head(SYN)
Coarse	85.10	91.80	91.80	92.50
Fine	82.60	84.90	84.00	85.00

- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous

Results

Syntactic features only:

Classifier	Word	POS	Chunk	Head(SYN)
Coarse	85.10	91.80	91.80	$92.50 \\ 85.00$
Fine	82.60	84.90	84.00	

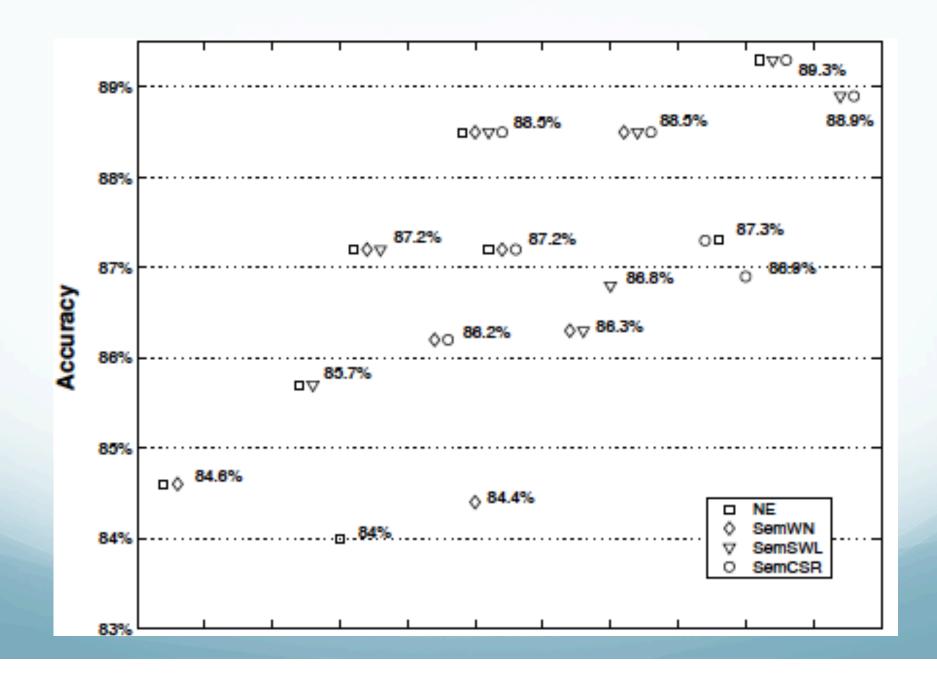
- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous
- Semantic features:
 - Best combination: SYN, NE, Manual & Auto word lists
 - Coarse: same; Fine: 89.3% (28.7% error reduction)

Results

Syntactic features only:

Classifier	Word	POS	Chunk	$\operatorname{Head}(\operatorname{SYN})$
Coarse	85.10	91.80	$91.80 \\ 84.00$	92.50
Fine	82.60	84.90		85.00

- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous
- Semantic features:
 - Best combination: SYN, NE, Manual & Auto word lists
 - Coarse: same; Fine: 89.3% (28.7% error reduction)
- Wh-word most common class: 41%



Class	#	Precision[c]	Class	#	Precision[c]
abb	2	100%	desc	25	36%
exp	17	94.11%	manner	8	87.5%
animal	27	85.18%	reason	7	85.71%
body	4	100%	gr	19	89.47%
color	12	100%	ind	154	90.25%
cremat	13	76.92%	title	4	100%
currency	6	100%	desc	3	100%
dismed	4	50%	city	41	97.56%
event	4	75%	country	21	95.23%
food	6	100%	mount	2	100%
instru	1	100%	LOC:other	116	89.65%
lang	3	100%	state	14	78.57%
ENTY:other	24	37.5%	count	24	91.66%
plant	3	100%	date	145	100%
product	6	66.66%	dist	37	97.29%
religion	1	100%	money	6	100%
sport	4	75%	NUM:other	15	93.33%
substance	21	80.95%	period	20	85%
symbol	2	100%	perc	9	77.77%
termeq	22	63.63%	speed	8	100%
veh	7	71.42%	temp	4	100%
def	125	97.6%	weight	4	100%
TOTAL	1000	89.3%	-		

Observations

- Effective coarse and fine-grained categorization
 - Mix of information sources and learning
 - Shallow syntactic features effective for coarse
 - Semantic features improve fine-grained
 - Most feature types help
 - WordNet features appear noisy
 - Use of distributional sense clusters dramatically increases feature dimensionality

NE	0.23
SemWN	16
SemCSR	23
SemSWL	557