Genres: Discourse, Speech, and Tweets

Sentiment, Subjectivity & Stance Ling 575 April 15, 2014

Roadmap

- Effects of genre on sentiment:
 - Spoken multi-party dialog
 - Guest lecturer: Valerie Freeman
 - Discourse and dialog (from text)
 - Tweets
- Examples: State-of-the-art
- Course mechanics

Sentiment in Speech

- Key contrasts:
 - Acoustic channel carries additional information
 - Speaking rate, loudness, intonation
 - Hyperarticulation
 - Conversational:
 - Utterances short, elliptical, disfluent
 - Multi-party:
 - Turn-taking, inter-speaker relations
 - Discourse factors

Discourse & Dialog

Sentiment in Discourse & Dialog

- Many sentiment-bearing docs are discourses
 - Extended spans of text or speech
 - E.g. Amazon product reviews, OpenTable, blogs, etc
- However, discourse factors often ignored
 - Structure:
 - Sequential structure
 - Topical structure
 - Dialog
 - Relations among participants
 - Relations among sides/stances

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible.

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible. **But I loved it**

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible. **But I loved it**
- What would bag-of-words say?

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible. **But I loved it**
- What would bag-of-words say? Negative
- Possible simple solution

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible. **But I loved it**
- What would bag-of-words say? Negative
- Possible simple solution: position-tagged features

- Sentiment within a doc not simple aggregation
 - I hate the Spice Girls. ... [3 things the author hates about them] ... Why I saw this movie is a really, really, really long story, but I did, and one would think I'd despise every minute of it. But... Okay, I'm really ashamed of it, but I enjoyed it. I mean, I admit it's a really awful movie, ... [they] act wacky as hell...the ninth floor of hell...a cheap [beep] movie...The plot is such a mess that it's terrible. But I loved it
- What would bag-of-words say? Negative
- Possible simple solution: position-tagged features
 - Sadly no better than bag-of-words

- Summarization baseline:
 - In newswire topic summarization:

- Summarization baseline:
 - In newswire topic summarization:
 - First few sentences
 - Headline, lede
 - Often used as strong baseline in evaluations
 - In subjective reviews:

- Summarization baseline:
 - In newswire topic summarization:
 - First few sentences
 - Headline, lede
 - Often used as strong baseline in evaluations
 - In subjective reviews:
 - Last few lines
 - "Thwarted expectations"

- Summarization baseline:
 - In newswire topic summarization:
 - First few sentences
 - Headline, lede
 - Often used as strong baseline in evaluations
 - In subjective reviews:
 - Last few lines
 - "Thwarted expectations"
- Last n sentences of review much better summary
 - Than first n lines
 - Competitive with n most subjective sents overall

Discourse Factors: Cohesion

- Inspired by lexical chains in discourse analysis
 - Document cohesion influenced by topic repetition

Discourse Factors: Cohesion

- Inspired by lexical chains in discourse analysis
 - Document cohesion influenced by topic repetition
- Idea:
 - Neighboring sentences (often) have similar
 - Subjectivity status
 - Sentiment polarity

Discourse Factors: Cohesion

- Inspired by lexical chains in discourse analysis
 - Document cohesion influenced by topic repetition
- Idea:
 - Neighboring sentences (often) have similar
 - Subjectivity status
 - Sentiment polarity
- Approach:
 - Use baseline sentence level classifier
 - Improve with information from neighboring sentences
 - 'sentiment flow', min-cut (subj), other graph-based models

- Relations among dialog participants informative
- Online debates (Agrawal et al)
 - Patterns in 'responded to' and 'quoted' relations

- Relations among dialog participants informative
- Online debates (Agrawal et al)
 - Patterns in 'responded to' and 'quoted' relations
 - 74% of responses → opposing stance
 - Only 7% reinforcing
 - Quotes also generally drawn from opposing side

- Relations among dialog participants informative
- Online debates (Agrawal et al)
 - Patterns in 'responded to' and 'quoted' relations
 - 74% of responses → opposing stance
 - Only 7% reinforcing
 - Quotes also generally drawn from opposing side
- Application:
 - How can we group individuals by stance?

- Relations among dialog participants informative
- Online debates (Agrawal et al)
 - Patterns in 'responded to' and 'quoted' relations
 - 74% of responses → opposing stance
 - Only 7% reinforcing
 - Quotes also generally drawn from opposing side
- Application:
 - How can we group individuals by stance?
 - Cluster those who quote/respond to same individuals

- Beyond quoting in Congressional floor debates
 - Build on classifier for pro/con

- Beyond quoting in Congressional floor debates
 - Build on classifier for pro/con
 - Build another classifier to tag references to others as
 - Agreement/disagreement
 - Employ agreement/disagreement network as constraint

- Beyond quoting in Congressional floor debates
 - Build on classifier for pro/con
 - Build another classifier to tag references to others as
 - Agreement/disagreement
 - Employ agreement/disagreement network as constraint
 - Yields an improvement in pro/con classification alone

Sentiment in Twitter

- Reverse of discourse/dialog setting
 - Extremely short content: 140 characters
 - Related: SMS
- Distinguishing characteristics:

Sentiment in Twitter

- Reverse of discourse/dialog setting
 - Extremely short content: 140 characters
 - Related: SMS
- Distinguishing characteristics:
 - Length
 - Emoticons, Hashtags, userids
 - Retweets
 - Punctuation
 - Spelling/jargon
 - Structure

SEMEVAL 2013 Task

- Twitter sentiment task:
 - Usual shared task goals
 - Standard, available annotated corpus; fixed tasks, resource
 - Amazon Mechanical Turk labeling

SEMEVAL 2013 Task

- Twitter sentiment task:
 - Usual shared task goals
 - Standard, available annotated corpus; fixed tasks, resource
 - Amazon Mechanical Turk labeling
- Two subtasks:
 - Term-level: identify sentiment of specific term in context
 - Message-level: identify overall sentiment of message

SEMEVAL 2013 Task

- Twitter sentiment task:
 - Usual shared task goals
 - Standard, available annotated corpus; fixed tasks, resource
 - Amazon Mechanical Turk labeling
- Two subtasks:
 - Term-level: identify sentiment of specific term in context
 - Message-level: identify overall sentiment of message
- ~13K tweets: train/dev/test splits
 - ~2K SMS for comparison: test only

Overall

- Overall:
 - Term-level easier than message-level,
 - Tweets easier than SMS (adaptation)
- Total # teams: 44

Overall

- Overall:
 - Term-level easier than message-level,
 - Tweets easier than SMS (adaptation)
- Total # teams: 44
- Best system: NRC-Canada
 - Top in all but one condition
 - Message-level: 69 F-score
 - Term-level: ~89 F-score

- Classifier: SVM, linear kernel
- Lots of features:
 - Ngrams: word: 1,2,3,4+skip; char: 3,4,5 (binary)
 - Incorporates 'NEG' tagging

- Classifier: SVM, linear kernel
- Lots of features:
 - Ngrams: word: 1,2,3,4+skip; char: 3,4,5 (binary)
 - Incorporates 'NEG' tagging
 - Counts:
 - # all caps, # each POS tag, # hashtags, # contiguous punc
 - # elongated words, # negated contexts

- Classifier: SVM, linear kernel
- Lots of features:
 - Ngrams: word: 1,2,3,4+skip; char: 3,4,5 (binary)
 - Incorporates 'NEG' tagging
 - Counts:
 - # all caps, # each POS tag, # hashtags, # contiguous punc
 - # elongated words, # negated contexts
 - Position features:
 - Where the last token is: !/? or pos/neg emoticon

- Classifier: SVM, linear kernel
- Lots of features:
 - Ngrams: word: 1,2,3,4+skip; char: 3,4,5 (binary)
 - Incorporates 'NEG' tagging
 - Counts:
 - # all caps, # each POS tag, # hashtags, # contiguous punc
 - # elongated words, # negated contexts
 - Position features:
 - Where the last token is: !/? or pos/neg emoticon
 - Presence of pos/neg emoticons or Brown cluster wds

Message-level Sentiment

- Main novelty:
 - Lexical features
 - Manually constructed lexicons:
 - NRC emotion lexicon, MPQA, Bing Liu's lexicon
 - Two automatically constructed lexicons

Message-level Sentiment

- Main novelty:
 - Lexical features
 - Manually constructed lexicons:
 - NRC emotion lexicon, MPQA, Bing Liu's lexicon
 - Two automatically constructed lexicons
 - All tokens scored:
 - word unigrams, bigram, skip bigrams, POS tags, hashtags, all caps words
 - Score(w) = PMI(w, positive) PMI(w, negative)

Message-level Sentiment

- Main novelty:
 - Lexical features
 - Manually constructed lexicons:
 - NRC emotion lexicon, MPQA, Bing Liu's lexicon
 - Two automatically constructed lexicons
 - All tokens scored:
 - word unigrams, bigram, skip bigrams, POS tags, hashtags, all caps words
 - Score(w) = PMI(w, positive) PMI(w, negative)
 - Features include: # wds w/positive score, total score, max score, last positive score

Lexicon Induction

- Bootstrapping approach:
 - Key insight:
 - Hashtagged emotion words good cues to tweet as whole
 - E.g. joy, sadness, etc
 - Use as noisy tags for large corpus

Lexicon Induction

- Bootstrapping approach:
 - Key insight:
 - Hashtagged emotion words good cues to tweet as whole
 - E.g. joy, sadness, etc
 - Use as noisy tags for large corpus
- Strategy: Poll twitter API
 - Use collection of positive and negative seed hashtags
 - 775K tagged tweets
 - Positive if has one of the positive hashtags
 - Negative if has one of the negative hashtags
 - Use to train word-polarity association scores

Lexicons

- Applied to Twitter corpus
 - 54K unigrams, 316K bigrams, 308K pairs
- Also applied to sentiment140 corpus
 - Similar strategy, but cued on emoticons
 - 62K unigrams, 677K bigrams, 480K pairs

Message Classification Feature Analysis

Experiment	Tweets	SMS
all features	69.02	68.46
all - lexicons	60.42 (-8.60)	59.73 (-8.73)
all - manual lex.	67.45 (-1.57)	65.64 (-2.82)
all - auto. lex.	63.78 (-5.24)	67.12 (-1.34)
all - Senti140 lex.	65.25 (-3.77)	67.33 (-1.13)
all - Hashtag lex.	65.22 (-3.80)	70.28 (1.82)
all - ngrams	61.77 (-7.25)	67.27 (-1.19)
all - word ngrams	64.64 (-4.38)	66.56 (-1.9)
all - char. ngrams	67.10 (-1.92)	68.94 (0.48)
all - negation	67.20 (-1.82)	66.22 (-2.24)
all - POS	68.38 (-0.64)	67.07 (-1.39)
all - clusters	69.01 (-0.01)	68.10 (-0.36)
all - encodings (elongated, emoticons, punctuations,		
all-caps, hashtags)	69.16 (0.14)	68.28 (-0.18)

Term Classification Feature Analysis

Experiment	Tweets	SMS
all features	89.10	88.34
all - ngrams	83.86 (-5.24)	80.49 (-7.85)
all - word ngrams	88.38 (-0.72)	87.37 (-0.97)
all - char. ngrams	89.01 (-0.09)	87.31 (-1.03)
all - lexicons	85.15 (-3.95)	83.70 (-4.64)
all - manual lex.	87.69 (-1.41)	86.84 (-1.5)
all - auto lex.	88.24 (-0.86)	86.65 (-1.69)
all - negation	88.38 (-0.72)	86.77 (-1.57)
all - stopwords	89.17 (0.07)	88.30 (-0.04)
all - encodings (elongated words, emoticons, punctns.,		
uppercase)	89.16 (0.06)	88.39 (0.05)
all - target	72.97 (-16.13)	68.96 (-19.38)
all - context	85.02 (-4.08)	85.93 (-2.41)

- Message level analysis
- Lexical features very important
 - Automatically induced lexicons significant contribution
 - Roughly 5 points of F-score
 - For tweets only: doesn't carry over to SMS

- Message level analysis
- Lexical features very important
 - Automatically induced lexicons significant contribution
 - Roughly 5 points of F-score
 - For tweets only: doesn't carry over to SMS
- N-grams next most important
 - Words somewhat higher (in tweets)

- Message level analysis
- Lexical features very important
 - Automatically induced lexicons significant contribution
 - Roughly 5 points of F-score
 - For tweets only: doesn't carry over to SMS
- N-grams next most important
 - Words somewhat higher (in tweets)
- Encoding features:
 - Minimal impact:

- Message level analysis
- Lexical features very important
 - Automatically induced lexicons significant contribution
 - Roughly 5 points of F-score
 - For tweets only: doesn't carry over to SMS
- N-grams next most important
 - Words somewhat higher (in tweets)
- Encoding features:
 - Minimal impact:
 - Redundant with lexical and ngram features

Discussion II

- Term-level analysis
- Similar features, but focused on target term
 - Along with term length, term split features

Discussion II

- Term-level analysis
- Similar features, but focused on target term
 - Along with term length, term split features
- N-gram features biggest impact
 - 5-7 points F-score
 - Data fits well: 85% of target terms seen in training

Discussion II

- Term-level analysis
- Similar features, but focused on target term
 - Along with term length, term split features
- N-gram features biggest impact
 - 5-7 points F-score
 - Data fits well: 85% of target terms seen in training
- Lexicon features next
 - Impact of manual lexicon less clear cut

Summary

- Sentiment classification is not just text classification
 - Differs in response to many factors
 - Tokenization, stemming, POS tagging, negation...
- Baseline ML polarity classification
 - Built on (adapted) bag-of-words models
 - Draws on machine learning approaches
- Can be enhanced through improved linguistic, context features
- Similarities & differences across genres

Course Mechanics

- Individual
 - Critical reading assignments
 - Weekly one paper
- Groups of 2-3
 - Lead topic presentation/discussion: once
 - Select from list of topics, readings
 - Analyze, discuss in class
 - Term project
 - Explore specific topic in depth
 - Can implementation or analysis + write-up
 - Linguistics elective: talk to me

Datasets

- Diverse data sets:
 - Web sites: Lillian Lee's and Bing Liu's
- Movie review corpora
- Amazon product review corpus
- Online and Congressional floor debate corpora
- Multi-lingual corpora: esp. NTCIR
- MPQA subjectivity annotation news corpus