
Ling573 - Deliverable 2

Eric Garnick
John T. McCranie

Olga Whelan

Automatic Summarization
Project

System Architecture

● Extract document text +
meta-data, store in Python
data structures, save
externally in pickles

● Weight and process
sentences

● Select best dissimilar
sentences

● Assemble summary

Background Corpus

● Gigaword corpus 5th Ed. ~ 26 GB text

● whitespace tokenize for alphanumeric

characters

● Filter stopwords

● 6,295,429 tokens, 163,146 types

● record unigram counts

Text Extraction

● Find and save target document from file

○ regular expressions

○ string matching

● Clean xml with ElementTree
○ Save plain text

○ Save meta-data (topic-ids, titles, doc-ids)

Input Pre-Processing

● Sentence-split with NLTK sentence

tokenizer

Content Selection
1. LLR weighting 3. Check length

2. Remove extraneous tokens 4. Check sentence overlap with existing summary

LLR Calculation

word occurs equally in target text and in the wild
λ(wi) =

word occurrence is unequal in both environments

1. Compare counts for word in target text and
background corpus

2. wi = -2 log λ (wi) – score for word wi
3. Sentence weight is count of words in sentence

with LLR score > 10 normalized by sentence
length.

Sentence Filtering
● Remove extraneous tokens
– Common forms of contact information
– Uninformative “phrases”
– Common non-alphanumeric “tokens”

● Keep relatively long sentences (> 8 words)

● Check word overlap with existing summary
sentences
– Simple cosine similarity score
– Omit if similarity > 0.5

Info Ordering / Content Realization

● arrangement follows document order by
doc ID (time stamp)

● intra-document order disregarded

● sentences realized as they appear in the
document or in whatever form they take
after shortening

Lead:

LLR +
processing:

Results

Analysis and Issues
We have given priority to the afforestation in the habitats.
Shaanxi has so far established 13 giant pandas protection zones and nature
reserves focused on pandas' habitats.
The Qinling panda has been identified as a sub-species of the giant panda that
mainly resides in southwestern Sichuan province.
Nature preserve workers in northwest China's Gansu Province have
formulated a rescue plan to save giant pandas from food shortage caused by
arrow bamboo flowering.
Currently more than 1,500 giant pandas live wild in China, according to a
survey by the State Forestry Administration.

● Ordering of sentences affects the impression
● Non-coreferred pronouns are confusing
● Irrelevant information takes up summary space
● Word removal approach relies too much on punctuation

Resources
● basic design, LLR calculation:

– Jurafsky & Martin, 2008

● filtering sentences by length, checking
sentence similarity:
– Hong & Nenkova, 2014

● computing LLR with Gigaworld:
– Parker & al., 2011

Future Work
Content Selection

● coreference resolution - CLASSY (Conroy et al.,
2004)

● sentence position

Information Ordering

● clustering sentences based on similarity (word
overlap and other semantic similarity measures)

LING 573, Spring 2015

Jeff Heath
Michael Lockwood

Amy Marsh

Document Summarization

2

2

2

2

2

Random Baseline

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.15323 0.02842 0.00654 0.00256

CLASSY Overview

● Hidden Markov Model trained on features of
summary sentences of training data

● Used to compute weights for each sentence in
test data

● Select sentences with highest weights
● QR Matrix Decomposition used to avoid

redundancy in selected sentences

Log Likelihood Ratio

● Find words that are significantly more likely to
appear in this document cluster compared to
background corpus

● If LLR > 10, word counts as topic signature
word

● Sentence score is # of topic signature
words/length of sentence

● Cosine similarity to avoid redundancy

Selection Based on LLR

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.28021 0.07925 0.02656 0.01071

QR Matrix Decomposition

● Represent each sentence as a vector
● Conroy and O'Leary (2001): dimensions of

vector are open-class words
● We use log likelihood ratio to determine

dimensions of vector
● Terms weighted by sentence's position in

document:

where j = sentence number, n = # of sentences
in document, g = 10, t = 3

g∗e
−8∗j
n +t

QR Matrix Decomposition

● Choose sentence (vector) with highest
magnitude

● Keep components of remaining sentence
vectors that are orthogonal to the vector chosen

● Repeat until you reach 100 word summary

Selection Based on QR
Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.23280 0.05685 0.01540 0.00380

HMM Training

● Build transition, start, and emission counts
● Turn emissions into covariance matrix/precision

matrix
● Record column averages
● Store pickle outputs

HMM Decoding

● Decode class to manage data structures with
document set objects

● Process forward and backward recursions

● Observation sequence:

– Build (O
t
 – mu

i
)T Σ-1 (O

t
 – mu

i
) → 1 x 1 matrix

– Apply the χ2-distribution

– Subtract from identity

HMM Decoding

● Create ω value from forward recursion
● Calculate γ weight for each sentence
● Final weights from sum of the even states

Selection Based on HMM
and QR Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.17871 0.04425 0.01729 0.00714

All Results

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Random 0.15323 0.02842 0.00654 0.00256

LLR 0.28021 0.07925 0.02656 0.01071

QR 0.23280 0.05685 0.01540 0.00380

HMM+QR 0.17871 0.04425 0.01729 0.00714

Future Work

● Need to apply the linguistic elements of
CLASSY

● Revise decoding so that forward and backward
relatively balance

● Consider updating the features to more
contemporary methods

● Further parameter tuning

D2 Summary
Sentence Selection Solution

Brandon Gahler
Mike Roylance
Thomas Marsh

Architecture: Technologies

Python 2.7.9 for all coding tasks

NLTK for tokenization, chunking and sentence segmentation.

pyrouge for evaluation

Architecture: Implementation
Reader:
● Topic parser reads topics and generates filenames
● Document parser reads documents and makes document descriptors

Document Model:
● Sentence Segmentation and “cleaning”
● Tokenization
● NP Chunker

Summarizer - creates summaries

Evaluator - uses pyrouge to call ROUGE-1.5.5.pl

Architecture: Block Diagram

Summarizer

Employed Several Techniques:

Each Technique:
● Computes rank for all sentences normalized from 0 to 1
● Is given a weight from 0 to 1

Weighted sentence rank scores are added together
Overall best sentences are selected from the summary sum

Summary Techniques

● Simple Graph Similarity Measure

● NP Clustering

● Sentence Location

● Sentence Length

● tf*idf

Trivial Techniques

● Sentence Position Ranking - Highest sentences get highest rank

● Sentence Length Ranking - Longest sentences get best rank

● tf*idf - All non-stop words get tf*idf computed and the total is divided by
sentence length. Sentences with the highest sum of tf*idf get best rank.
○ We use the Reuters-21578, Distribution 1.0 Corpus of news articles as

a background corpus.
○ Scores are scaled so the best score is 1.0

Simple Graph Technique

Iterate:
● Build a fully connected graph of the cosine similarity (non-stopword raw

counts) of the sentences
● Compute the most connected sentence
● Give that sentence the highest score
● Change the weights of its edges to negative to discourage redundancy
● recompute

NP-Clustering Technique
Compute the most connected sentences:
● Use coreference resolution:

○ Find all the pronouns, and replace them with their antecedent
● Compare just the noun phrases of each sentence with every other

sentence.
○ Use edit distance for minor forgiveness
○ Normalize casing

● Similarity metric is the count of shared noun phrases
● Rank every sentence with between 0-1, with the highest being 1

Technique Weighting
It is difficult to tell how important each technique is in contributing to the overall
score. Because of this, we established a weight generator which did the
following:

for each technique:
● compute unweighted sentence ranks.

● Iterate weights of each technique from 0 to 1 at intervals of 0.1
○ for each weight set:

■ rank sentences based on new weights
■ generate rouge scores

At the end, the best set of weights is the one with the optimal score!

Optimal Weights at Time of
Submission

AAANNND... the optimal set of weights turns out to be:

Disappointing!
It looked like none of our fancy techniques were able to
even slightly improve the performance of tf*idf by itself.

Results?

Average ROUGE scores for our tf*idf-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.55024 0.52418 0.53571

ROUGE2 0.44809 0.42604 0.43580

ROUGE3 0.38723 0.36788 0.37643

ROUGE4 0.33438 0.31742 0.32490

Results?

Obviously, we had done something wrong. It’s pretty unlikely that we got three
times better than the best summarizers! We figured out pretty quickly that it
was our method of calling rouge, and reran our weight generator.

Optimal Weights Revisited

Hurray! Upon running again, discovered that our hard
work had paid off after all! The NP-Clustering technique
proved to be the best, followed closely by “equal weight”
for every technique.

Optimal Weights

Optimal Technique Weights:

Technique Weight

tf*idf 0.0

Simple Graph 0.0

NP-Clustering 1.0

Sentence Position 0.0

Sentence Length 0.0

NP-Clustering Results

Average ROUGE scores for the NP-Clustering-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23391 0.28553 0.25522

ROUGE2 0.05736 0.07053 0.06272

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584

Equal Weight Results

Average ROUGE scores for our “equal weight” solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23336 0.28628 0.25516

ROUGE2 0.05708 0.07044 0.06251

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584

Simple Graph Results

Average ROUGE scores for the Simple Graph-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.19379 0.25550 0.21845

ROUGE2 0.04473 0.05859 0.05033

ROUGE3 0.01170 0.01505 0.01305

ROUGE4 0.00362 0.00453 0.00400

tf*idf Only Results

Average ROUGE scores for our (tf*idf-only) solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.15341 0.20846 0.17522

ROUGE2 0.03014 0.04037 0.03426

ROUGE3 0.00746 0.01038 0.00863

ROUGE4 0.00242 0.00329 0.00278

Room for Improvement
● Our individual content selection techniques are simple, and much tuning

and improvement remains to be done
○ Implement LLR and compare with tf*idf
○ Test other vector weighting schemes for cosine similarity in Simple

Graph technique
○ Merge the Simple Graph style of redundancy reduction into NP

Clustering technique
● Move coreference into document model so all content selection techniques

and future ordering/realization techniques can take advantage of it

References

Heinzerling, B and Johannsen, A (2014). pyrouge (Version 0.1.2) [Software].
Available from https://github.com/noutenki/pyrouge

Lin, C (2004). ROUGE (Version 1.5.5) [Software]. Available from
http://www.berouge.com/Pages/default.aspx

https://github.com/noutenki/pyrouge
http://www.berouge.com/Pages/default.aspx
http://www.berouge.com/Pages/default.aspx

Summarization

LING573
RUTH MORRISON

FLORIAN BRAUN

ANDREW BAER

Contents

 System Overview

 Approach

 Preprocessing

 Centroid Creation

 Sentence Extraction

 Sentence Ordering

 Realization

 Current Results

Overview: Influences

 MEAD (Radev et. al.,

2000)

 Centroid based model

 Some scoring measures

for use in extracted

summaries

 CLASSY (Conroy et. al.,

2004)

 Log Likelihood Ratio to

detect features in the

cluster when

compared with the

background corpus.

 Matrix Reduction

Overview: Corpus

 Model:

 AQUAINT and AQUAINT2

 Document Clusters:

 AQUAINT and AQUAINT2

 The clusters of documents to be classified are generally 6-10 articles,

while the two corpus’ are around 2 million articles.

 Because of this, we believe that pulling our model and articles to

summarize from the same corpus’s will not negatively affect the

results.

Approach: Model Creation

 Background processing for LLR calculation

 Sentence breaking

 Feature vectors

 Unigrams, trigrams, and named entities.

 Punctutation removal, stopword removal, and lowercasing were done for
the creation of n-gram features.

 NLTK was used for sentence breaking, tokenization, NER and stopword
removal.

 The NLTK NE Chunker does a poor job of categorizing the types of
names, so we kept it in binary mode.

 Feature types are kept separate to maintain the probability space.

 Each are kept as their own model, enabling us to load any combination of
features we want into the summarizer.

Approach: Centroid Creation

 Similar preprocessing: sentence breaking and vectorization

 Feature counts are stored to compute LLR and then binarized.

 Calculate LLR of all features of a given type.

 Any feature above a threshold (10.0 for us) is weighted as 1, and any

feature below is weighted as 0.

 Allows retention of features on a per type basis.

 More favorable approach than simply Top N features from all type by

LLR value.

 A variable number of active features could capture differences in in

topic signature that may not be captured when every cluster centroid is

kept to an arbitrary number of non-zero weighted features.

Approach: Sentence Extraction

 Three main goals:

 Cosine similarity between sentence and centroid

 The position of the sentence within the document it occurs in

 Organized in decreasing value from 1 to 0, with the first sentence having one
and the last having 0.

 Overlap between the score of the first sentence and the current
sentence

 Dot product of the sentence vectors

 If there’s a headline it is treated as the first sentence

 Each subscore above is weighted and added together for the total
score.

 Makes the first sentence the highest scoring sentence

Approach: Sentence Extraction

 Matrix reduction model similar to CLASSY

 For new sentences, features that have already been present in

previous sentences are not factored into the score.

 Avoids redundancy

 The score recalculated and the new top scoring sentence is added to

the summary.

Approach: Sentence Ordering and

Realization

 The current sentence ordering is nothing more than the order of

appearance.

 Document IDs are sorted by date when they first read.

 Realization simply prints the sentences as they were retrieved.

Results

 Trigrams yielded the best results on 2010 data across all ROUGE

measures.

 NER was second, followed by unigrams.

 Combining feature sets did not improve results.

 Unigrams did better on 2009 data

 May hint at the difference between the two being negligible,

depending more on the content being summarized than anything else.

Results: ROUGE, 2010 data

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Trigrams .23115

.06297

.02200

.00900

Unigrams .21506 .05213 .01481 .00481

Named Entities .22417 .05498 .01585 .00453

Trigrams+Unigrams .21547 .05354 .01578 .00543

Trigrams+Named Entities .22972 .06087 .02064 .00727

Unigrams+Named Entities .21655 .05244 .01508 .00491

All .21725 .05270 .01607 .00527

Results: ROUGE, 2009 data

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Trigrams .25916 .07706 .02943 .01308

Unigrams .28889 .08884 .03354 .01512

Discussion

 Major source of error could be sparseness of the feature vectors being
compared to the LLR generated centroid.

 Caused by the large number of features and matrix reduction

 The latter could remove most or all the features from a particular vector,
resulting in sentences with no similarity to the centroid.

 The system will choose many lead sentences, replicating the LEAD baseline
algorithm.

 Could avoid this by using a more MMR based system to avoid redundancy

 Could add more features to the content selection, downweighting
sentence position relative to other factors.

 Change the weights entirely.

 Change the overlap score to represent the overlap with given topic name,
rather than the headline.

Preproc	

&	
 	

Parse	

Content	

Selec0on	

Informa0on	

Ordering	

Content	

Realiza0on	

Postproc	

&	
 File	

Crea0on	

Text	
 Summariza-on	

	

Syed	
 Sameer	
 Arshad	

Tristan	
 Chong	

Preprocessing	
 and	
 Parsing	

•  XML	
 formaBng	
 was	
 an	
 issue	

•  Both	
 corpora	
 had	
 different	
 arrangements	
 for	

the	
 data.	

•  It	
 was	
 challenging	
 to	
 scrub	
 the	
 data	
 in	
 order	
 to	

parse	
 it.	

•  Needed	
 to	
 make	
 two	
 parsers	
 in	
 Python.	

Content	
 Selec0on	

•  We	
 used	
 MEAD	

•  We	
 set	
 count-­‐IDF	
 threshold	
 for	
 entry	
 into	
 the	
 centroid	
 to	
 be	
 5.	
 	

–  This	
 was	
 an	
 arbitrary	
 choice.	

•  We	
 used	
 the	
 Radev	
 et	
 al.	
 2000	
 paper	
 to	
 set	
 up	
 other	
 constants,	
 such	
 as	

the	
 minimum	
 number	
 of	
 words	
 in	
 a	
 summarized	
 sentence.	

•  Final	
 Score	
 =	
 c	
 *	
 centroid-­‐score	
 +	
 p	
 *	
 posi0on-­‐score	
 +	
 f	
 *	
 first-­‐sentence-­‐

similarity-­‐score	
 	

•  Centroid	
 score	
 is	
 the	
 sum	
 of	
 count-­‐IDF	
 for	
 each	
 term	
 found	
 in	
 a	
 sentence.	

•  First-­‐sentence-­‐similarity	
 –score	
 is	
 the	
 dot-­‐product	
 between	
 a	
 sentence	

and	
 the	
 first-­‐sentence	
 designated	
 for	
 its	
 ar0cle.	

–  The	
 first	
 sentence	
 of	
 an	
 ar0cle	
 is	
 its	
 headline.	
 If	
 the	
 headline	
 is	
 smaller	
 than	
 9	

words,	
 it	
 is	
 the	
 first	
 sentence	
 in	
 the	
 ar0cle	
 that	
 is	
 at	
 least	
 15	
 words	
 long.	

•  Posi0on-­‐score	
 is	
 set	
 to	
 1	
 for	
 the	
 first	
 sentence	
 in	
 an	
 ar0cle	
 and	
 then	
 drops	

frac0onally	
 towards	
 0	
 for	
 every	
 following	
 sentence.	

•  All	
 three	
 scores	
 were	
 normalized	
 with	
 min-­‐max	
 normaliza0on.	

•  C	
 =	
 3,	
 p	
 =	
 2,	
 f	
 =	
 1	

Informa0on	
 Ordering	

•  A]er	
 we	
 sort	
 all	
 sentences	
 related	
 to	
 a	
 topic	
 in	

descending	
 order	
 of	
 final-­‐score,	
 we	
 pick	
 the	

minimum	
 number	
 of	
 top	
 highest	
 scoring	

sentences	
 that	
 help	
 us	
 reach	
 the	
 word	
 limit.	

•  Then	
 divide	
 them	
 into	
 five	
 cohorts.	

•  Each	
 cohort	
 represents	
 sentences	
 found	
 in	

par0cular	
 quin0les	
 of	
 their	
 source	
 documents.	

•  We	
 follow	
 this	
 principle:	

–  If	
 a	
 selected	
 sentence	
 was	
 located	
 in	
 the	
 n’th	
 20%	
 of	
 a	

document,	
 it	
 should	
 end	
 up	
 in	
 the	
 n’th	
 20%	
 of	
 the	

summary,	
 where	
 n	
 ranges	
 from	
 1	
 to	
 5.	

Content	
 Realiza0on	

•  We	
 just	
 copied	
 the	
 source	
 sentence	
 into	
 the	

summary	
 as	
 is.	

Post-­‐processing	
 and	
 File	
 Crea0on	

•  We	
 pasted	
 every	
 sentence	
 on	
 a	
 new	
 line,	
 as	

requested.	

Results	

ROUGE1	

	

ROUGE2	
 	
 ROUGE3	
 	
 ROUGE4	

Precision	
 0.222	
 0.04705	
 0.01453	
 0.00352	

Recall	
 0.19886	
 0.04261	
 0.01317	
 0.00316	

F-­‐Score	
 0.20922	
 0.04461	
 0.01378	
 0.00332	

	GarnickWhelan
	HeathLockwoodMarsh
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	GahlerMarshRoylance
	MorrisonBraunBaer
	SameerTristan

