
Ling573 - Deliverable 2

Eric Garnick
John T. McCranie

Olga Whelan

Automatic Summarization
Project

System Architecture

● Extract document text +
meta-data, store in Python
data structures, save
externally in pickles

● Weight and process
sentences

● Select best dissimilar
sentences

● Assemble summary

Background Corpus

● Gigaword corpus 5th Ed. ~ 26 GB text

● whitespace tokenize for alphanumeric

characters

● Filter stopwords

● 6,295,429 tokens, 163,146 types

● record unigram counts

Text Extraction

● Find and save target document from file

○ regular expressions

○ string matching

● Clean xml with ElementTree
○ Save plain text

○ Save meta-data (topic-ids, titles, doc-ids)

Input Pre-Processing

● Sentence-split with NLTK sentence

tokenizer

Content Selection
1. LLR weighting 3. Check length

2. Remove extraneous tokens 4. Check sentence overlap with existing summary

LLR Calculation

word occurs equally in target text and in the wild
λ(wi) =

word occurrence is unequal in both environments

1. Compare counts for word in target text and
background corpus

2. wi = -2 log λ (wi) – score for word wi
3. Sentence weight is count of words in sentence

with LLR score > 10 normalized by sentence
length.

Sentence Filtering
● Remove extraneous tokens
– Common forms of contact information
– Uninformative “phrases”
– Common non-alphanumeric “tokens”

● Keep relatively long sentences (> 8 words)

● Check word overlap with existing summary
sentences
– Simple cosine similarity score
– Omit if similarity > 0.5

Info Ordering / Content Realization

● arrangement follows document order by
doc ID (time stamp)

● intra-document order disregarded

● sentences realized as they appear in the
document or in whatever form they take
after shortening

Lead:

LLR +
processing:

Results

Analysis and Issues
We have given priority to the afforestation in the habitats.
Shaanxi has so far established 13 giant pandas protection zones and nature
reserves focused on pandas' habitats.
The Qinling panda has been identified as a sub-species of the giant panda that
mainly resides in southwestern Sichuan province.
Nature preserve workers in northwest China's Gansu Province have
formulated a rescue plan to save giant pandas from food shortage caused by
arrow bamboo flowering.
Currently more than 1,500 giant pandas live wild in China, according to a
survey by the State Forestry Administration.

● Ordering of sentences affects the impression
● Non-coreferred pronouns are confusing
● Irrelevant information takes up summary space
● Word removal approach relies too much on punctuation

Resources
● basic design, LLR calculation:

– Jurafsky & Martin, 2008

● filtering sentences by length, checking
sentence similarity:
– Hong & Nenkova, 2014

● computing LLR with Gigaworld:
– Parker & al., 2011

Future Work
Content Selection

● coreference resolution - CLASSY (Conroy et al.,
2004)

● sentence position

Information Ordering

● clustering sentences based on similarity (word
overlap and other semantic similarity measures)

LING 573, Spring 2015

Jeff Heath
Michael Lockwood

Amy Marsh

Document Summarization

2

2

2

2

2

Random Baseline

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.15323 0.02842 0.00654 0.00256

CLASSY Overview

● Hidden Markov Model trained on features of
summary sentences of training data

● Used to compute weights for each sentence in
test data

● Select sentences with highest weights
● QR Matrix Decomposition used to avoid

redundancy in selected sentences

Log Likelihood Ratio

● Find words that are significantly more likely to
appear in this document cluster compared to
background corpus

● If LLR > 10, word counts as topic signature
word

● Sentence score is # of topic signature
words/length of sentence

● Cosine similarity to avoid redundancy

Selection Based on LLR

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.28021 0.07925 0.02656 0.01071

QR Matrix Decomposition

● Represent each sentence as a vector
● Conroy and O'Leary (2001): dimensions of

vector are open-class words
● We use log likelihood ratio to determine

dimensions of vector
● Terms weighted by sentence's position in

document:

where j = sentence number, n = # of sentences
in document, g = 10, t = 3

g∗e
−8∗j
n +t

QR Matrix Decomposition

● Choose sentence (vector) with highest
magnitude

● Keep components of remaining sentence
vectors that are orthogonal to the vector chosen

● Repeat until you reach 100 word summary

Selection Based on QR
Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.23280 0.05685 0.01540 0.00380

HMM Training

● Build transition, start, and emission counts
● Turn emissions into covariance matrix/precision

matrix
● Record column averages
● Store pickle outputs

HMM Decoding

● Decode class to manage data structures with
document set objects

● Process forward and backward recursions

● Observation sequence:

– Build (O
t
 – mu

i
)T Σ-1 (O

t
 – mu

i
) → 1 x 1 matrix

– Apply the χ2-distribution

– Subtract from identity

HMM Decoding

● Create ω value from forward recursion
● Calculate γ weight for each sentence
● Final weights from sum of the even states

Selection Based on HMM
and QR Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.17871 0.04425 0.01729 0.00714

All Results

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Random 0.15323 0.02842 0.00654 0.00256

LLR 0.28021 0.07925 0.02656 0.01071

QR 0.23280 0.05685 0.01540 0.00380

HMM+QR 0.17871 0.04425 0.01729 0.00714

Future Work

● Need to apply the linguistic elements of
CLASSY

● Revise decoding so that forward and backward
relatively balance

● Consider updating the features to more
contemporary methods

● Further parameter tuning

D2 Summary
Sentence Selection Solution

Brandon Gahler
Mike Roylance
Thomas Marsh

Architecture: Technologies

Python 2.7.9 for all coding tasks

NLTK for tokenization, chunking and sentence segmentation.

pyrouge for evaluation

Architecture: Implementation
Reader:
● Topic parser reads topics and generates filenames
● Document parser reads documents and makes document descriptors

Document Model:
● Sentence Segmentation and “cleaning”
● Tokenization
● NP Chunker

Summarizer - creates summaries

Evaluator - uses pyrouge to call ROUGE-1.5.5.pl

Architecture: Block Diagram

Summarizer

Employed Several Techniques:

Each Technique:
● Computes rank for all sentences normalized from 0 to 1
● Is given a weight from 0 to 1

Weighted sentence rank scores are added together
Overall best sentences are selected from the summary sum

Summary Techniques

● Simple Graph Similarity Measure

● NP Clustering

● Sentence Location

● Sentence Length

● tf*idf

Trivial Techniques

● Sentence Position Ranking - Highest sentences get highest rank

● Sentence Length Ranking - Longest sentences get best rank

● tf*idf - All non-stop words get tf*idf computed and the total is divided by
sentence length. Sentences with the highest sum of tf*idf get best rank.
○ We use the Reuters-21578, Distribution 1.0 Corpus of news articles as

a background corpus.
○ Scores are scaled so the best score is 1.0

Simple Graph Technique

Iterate:
● Build a fully connected graph of the cosine similarity (non-stopword raw

counts) of the sentences
● Compute the most connected sentence
● Give that sentence the highest score
● Change the weights of its edges to negative to discourage redundancy
● recompute

NP-Clustering Technique
Compute the most connected sentences:
● Use coreference resolution:

○ Find all the pronouns, and replace them with their antecedent
● Compare just the noun phrases of each sentence with every other

sentence.
○ Use edit distance for minor forgiveness
○ Normalize casing

● Similarity metric is the count of shared noun phrases
● Rank every sentence with between 0-1, with the highest being 1

Technique Weighting
It is difficult to tell how important each technique is in contributing to the overall
score. Because of this, we established a weight generator which did the
following:

for each technique:
● compute unweighted sentence ranks.

● Iterate weights of each technique from 0 to 1 at intervals of 0.1
○ for each weight set:

■ rank sentences based on new weights
■ generate rouge scores

At the end, the best set of weights is the one with the optimal score!

Optimal Weights at Time of
Submission

AAANNND... the optimal set of weights turns out to be:

Disappointing!
It looked like none of our fancy techniques were able to
even slightly improve the performance of tf*idf by itself.

Results?

Average ROUGE scores for our tf*idf-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.55024 0.52418 0.53571

ROUGE2 0.44809 0.42604 0.43580

ROUGE3 0.38723 0.36788 0.37643

ROUGE4 0.33438 0.31742 0.32490

Results?

Obviously, we had done something wrong. It’s pretty unlikely that we got three
times better than the best summarizers! We figured out pretty quickly that it
was our method of calling rouge, and reran our weight generator.

Optimal Weights Revisited

Hurray! Upon running again, discovered that our hard
work had paid off after all! The NP-Clustering technique
proved to be the best, followed closely by “equal weight”
for every technique.

Optimal Weights

Optimal Technique Weights:

Technique Weight

tf*idf 0.0

Simple Graph 0.0

NP-Clustering 1.0

Sentence Position 0.0

Sentence Length 0.0

NP-Clustering Results

Average ROUGE scores for the NP-Clustering-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23391 0.28553 0.25522

ROUGE2 0.05736 0.07053 0.06272

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584

Equal Weight Results

Average ROUGE scores for our “equal weight” solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23336 0.28628 0.25516

ROUGE2 0.05708 0.07044 0.06251

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584

Simple Graph Results

Average ROUGE scores for the Simple Graph-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.19379 0.25550 0.21845

ROUGE2 0.04473 0.05859 0.05033

ROUGE3 0.01170 0.01505 0.01305

ROUGE4 0.00362 0.00453 0.00400

tf*idf Only Results

Average ROUGE scores for our (tf*idf-only) solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.15341 0.20846 0.17522

ROUGE2 0.03014 0.04037 0.03426

ROUGE3 0.00746 0.01038 0.00863

ROUGE4 0.00242 0.00329 0.00278

Room for Improvement
● Our individual content selection techniques are simple, and much tuning

and improvement remains to be done
○ Implement LLR and compare with tf*idf
○ Test other vector weighting schemes for cosine similarity in Simple

Graph technique
○ Merge the Simple Graph style of redundancy reduction into NP

Clustering technique
● Move coreference into document model so all content selection techniques

and future ordering/realization techniques can take advantage of it

References

Heinzerling, B and Johannsen, A (2014). pyrouge (Version 0.1.2) [Software].
Available from https://github.com/noutenki/pyrouge

Lin, C (2004). ROUGE (Version 1.5.5) [Software]. Available from
http://www.berouge.com/Pages/default.aspx

https://github.com/noutenki/pyrouge
http://www.berouge.com/Pages/default.aspx
http://www.berouge.com/Pages/default.aspx

Summarization

LING573
RUTH MORRISON

FLORIAN BRAUN

ANDREW BAER

Contents

 System Overview

 Approach

 Preprocessing

 Centroid Creation

 Sentence Extraction

 Sentence Ordering

 Realization

 Current Results

Overview: Influences

 MEAD (Radev et. al.,

2000)

 Centroid based model

 Some scoring measures

for use in extracted

summaries

 CLASSY (Conroy et. al.,

2004)

 Log Likelihood Ratio to

detect features in the

cluster when

compared with the

background corpus.

 Matrix Reduction

Overview: Corpus

 Model:

 AQUAINT and AQUAINT2

 Document Clusters:

 AQUAINT and AQUAINT2

 The clusters of documents to be classified are generally 6-10 articles,

while the two corpus’ are around 2 million articles.

 Because of this, we believe that pulling our model and articles to

summarize from the same corpus’s will not negatively affect the

results.

Approach: Model Creation

 Background processing for LLR calculation

 Sentence breaking

 Feature vectors

 Unigrams, trigrams, and named entities.

 Punctutation removal, stopword removal, and lowercasing were done for
the creation of n-gram features.

 NLTK was used for sentence breaking, tokenization, NER and stopword
removal.

 The NLTK NE Chunker does a poor job of categorizing the types of
names, so we kept it in binary mode.

 Feature types are kept separate to maintain the probability space.

 Each are kept as their own model, enabling us to load any combination of
features we want into the summarizer.

Approach: Centroid Creation

 Similar preprocessing: sentence breaking and vectorization

 Feature counts are stored to compute LLR and then binarized.

 Calculate LLR of all features of a given type.

 Any feature above a threshold (10.0 for us) is weighted as 1, and any

feature below is weighted as 0.

 Allows retention of features on a per type basis.

 More favorable approach than simply Top N features from all type by

LLR value.

 A variable number of active features could capture differences in in

topic signature that may not be captured when every cluster centroid is

kept to an arbitrary number of non-zero weighted features.

Approach: Sentence Extraction

 Three main goals:

 Cosine similarity between sentence and centroid

 The position of the sentence within the document it occurs in

 Organized in decreasing value from 1 to 0, with the first sentence having one
and the last having 0.

 Overlap between the score of the first sentence and the current
sentence

 Dot product of the sentence vectors

 If there’s a headline it is treated as the first sentence

 Each subscore above is weighted and added together for the total
score.

 Makes the first sentence the highest scoring sentence

Approach: Sentence Extraction

 Matrix reduction model similar to CLASSY

 For new sentences, features that have already been present in

previous sentences are not factored into the score.

 Avoids redundancy

 The score recalculated and the new top scoring sentence is added to

the summary.

Approach: Sentence Ordering and

Realization

 The current sentence ordering is nothing more than the order of

appearance.

 Document IDs are sorted by date when they first read.

 Realization simply prints the sentences as they were retrieved.

Results

 Trigrams yielded the best results on 2010 data across all ROUGE

measures.

 NER was second, followed by unigrams.

 Combining feature sets did not improve results.

 Unigrams did better on 2009 data

 May hint at the difference between the two being negligible,

depending more on the content being summarized than anything else.

Results: ROUGE, 2010 data

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Trigrams .23115

.06297

.02200

.00900

Unigrams .21506 .05213 .01481 .00481

Named Entities .22417 .05498 .01585 .00453

Trigrams+Unigrams .21547 .05354 .01578 .00543

Trigrams+Named Entities .22972 .06087 .02064 .00727

Unigrams+Named Entities .21655 .05244 .01508 .00491

All .21725 .05270 .01607 .00527

Results: ROUGE, 2009 data

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Trigrams .25916 .07706 .02943 .01308

Unigrams .28889 .08884 .03354 .01512

Discussion

 Major source of error could be sparseness of the feature vectors being
compared to the LLR generated centroid.

 Caused by the large number of features and matrix reduction

 The latter could remove most or all the features from a particular vector,
resulting in sentences with no similarity to the centroid.

 The system will choose many lead sentences, replicating the LEAD baseline
algorithm.

 Could avoid this by using a more MMR based system to avoid redundancy

 Could add more features to the content selection, downweighting
sentence position relative to other factors.

 Change the weights entirely.

 Change the overlap score to represent the overlap with given topic name,
rather than the headline.

Preproc	
&	 	

Parse	

Content	
Selec0on	

Informa0on	
Ordering	

Content	
Realiza0on	

Postproc	
&	 File	

Crea0on	

Text	 Summariza-on	
	

Syed	 Sameer	 Arshad	
Tristan	 Chong	

Preprocessing	 and	 Parsing	

•  XML	 formaBng	 was	 an	 issue	
•  Both	 corpora	 had	 different	 arrangements	 for	
the	 data.	

•  It	 was	 challenging	 to	 scrub	 the	 data	 in	 order	 to	
parse	 it.	

•  Needed	 to	 make	 two	 parsers	 in	 Python.	

Content	 Selec0on	
•  We	 used	 MEAD	
•  We	 set	 count-‐IDF	 threshold	 for	 entry	 into	 the	 centroid	 to	 be	 5.	 	

–  This	 was	 an	 arbitrary	 choice.	
•  We	 used	 the	 Radev	 et	 al.	 2000	 paper	 to	 set	 up	 other	 constants,	 such	 as	

the	 minimum	 number	 of	 words	 in	 a	 summarized	 sentence.	
•  Final	 Score	 =	 c	 *	 centroid-‐score	 +	 p	 *	 posi0on-‐score	 +	 f	 *	 first-‐sentence-‐

similarity-‐score	 	
•  Centroid	 score	 is	 the	 sum	 of	 count-‐IDF	 for	 each	 term	 found	 in	 a	 sentence.	
•  First-‐sentence-‐similarity	 –score	 is	 the	 dot-‐product	 between	 a	 sentence	

and	 the	 first-‐sentence	 designated	 for	 its	 ar0cle.	
–  The	 first	 sentence	 of	 an	 ar0cle	 is	 its	 headline.	 If	 the	 headline	 is	 smaller	 than	 9	

words,	 it	 is	 the	 first	 sentence	 in	 the	 ar0cle	 that	 is	 at	 least	 15	 words	 long.	
•  Posi0on-‐score	 is	 set	 to	 1	 for	 the	 first	 sentence	 in	 an	 ar0cle	 and	 then	 drops	

frac0onally	 towards	 0	 for	 every	 following	 sentence.	
•  All	 three	 scores	 were	 normalized	 with	 min-‐max	 normaliza0on.	
•  C	 =	 3,	 p	 =	 2,	 f	 =	 1	

Informa0on	 Ordering	
•  A]er	 we	 sort	 all	 sentences	 related	 to	 a	 topic	 in	
descending	 order	 of	 final-‐score,	 we	 pick	 the	
minimum	 number	 of	 top	 highest	 scoring	
sentences	 that	 help	 us	 reach	 the	 word	 limit.	

•  Then	 divide	 them	 into	 five	 cohorts.	
•  Each	 cohort	 represents	 sentences	 found	 in	
par0cular	 quin0les	 of	 their	 source	 documents.	

•  We	 follow	 this	 principle:	
–  If	 a	 selected	 sentence	 was	 located	 in	 the	 n’th	 20%	 of	 a	
document,	 it	 should	 end	 up	 in	 the	 n’th	 20%	 of	 the	
summary,	 where	 n	 ranges	 from	 1	 to	 5.	

Content	 Realiza0on	

•  We	 just	 copied	 the	 source	 sentence	 into	 the	
summary	 as	 is.	

Post-‐processing	 and	 File	 Crea0on	

•  We	 pasted	 every	 sentence	 on	 a	 new	 line,	 as	
requested.	

Results	

ROUGE1	
	

ROUGE2	 	 ROUGE3	 	 ROUGE4	

Precision	 0.222	 0.04705	 0.01453	 0.00352	

Recall	 0.19886	 0.04261	 0.01317	 0.00316	

F-‐Score	 0.20922	 0.04461	 0.01378	 0.00332	

	GarnickWhelan
	HeathLockwoodMarsh
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	GahlerMarshRoylance
	MorrisonBraunBaer
	SameerTristan

