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System Architecture

● Extract document text + 
meta-data, store in Python 
data structures, save 
externally in pickles

● Weight and process 
sentences

● Select best dissimilar 
sentences

● Assemble summary



Background Corpus

● Gigaword corpus 5th Ed. ~ 26 GB text

● whitespace tokenize for alphanumeric 

characters

● Filter stopwords

● 6,295,429 tokens, 163,146 types

● record unigram counts



Text Extraction

● Find and save target document from file 

○ regular expressions 

○ string matching

● Clean xml with ElementTree
○ Save plain text

○ Save meta-data (topic-ids, titles, doc-ids)



Input Pre-Processing

● Sentence-split with NLTK sentence 

tokenizer



Content Selection
1. LLR weighting 3. Check length

2. Remove extraneous tokens 4. Check sentence overlap with existing summary



LLR Calculation

word occurs equally in target text and in the wild
λ(wi) =     

word occurrence is unequal in both environments

1. Compare counts for word in target text and 
background corpus

2. wi = -2 log λ ( wi ) – score for word wi
3. Sentence weight is count of words in sentence 

with LLR score > 10 normalized by sentence 
length.



Sentence Filtering
● Remove extraneous tokens
– Common forms of contact information
– Uninformative “phrases”
– Common non-alphanumeric “tokens”

● Keep relatively long sentences (> 8 words)

● Check word overlap with existing summary 
sentences
– Simple cosine similarity score
– Omit if similarity > 0.5



Info Ordering / Content Realization

● arrangement follows document order by 
doc ID (time stamp)

● intra-document order disregarded

● sentences realized as they appear in the 
document or in whatever form they take 
after shortening



Lead:

LLR + 
processing:

Results



Analysis and Issues
We have given priority to the afforestation in the habitats.
Shaanxi has so far established 13 giant pandas protection zones and nature 
reserves focused on pandas' habitats.
The Qinling panda has been identified as a sub-species of the giant panda that 
mainly resides in southwestern Sichuan province.
Nature preserve workers in northwest China's Gansu Province have 
formulated a rescue plan to save giant pandas from food shortage caused by 
arrow bamboo flowering.
Currently more than 1,500 giant pandas live wild in China, according to a 
survey by the State Forestry Administration.

● Ordering of sentences affects the impression
● Non-coreferred pronouns are confusing
● Irrelevant information takes up summary space
● Word removal approach relies too much on punctuation



Resources
● basic design, LLR calculation: 

– Jurafsky & Martin, 2008 

● filtering sentences by length, checking 
sentence similarity:
– Hong & Nenkova, 2014

● computing LLR with Gigaworld: 
– Parker & al., 2011



Future Work
Content Selection

● coreference resolution - CLASSY (Conroy et al., 
2004)

● sentence position

Information Ordering

● clustering sentences based on similarity (word 
overlap and other semantic similarity measures) 
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Random Baseline

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.15323 0.02842 0.00654 0.00256



  

CLASSY Overview

● Hidden Markov Model trained on features of 
summary sentences of training data

● Used to compute weights for each sentence in 
test data

● Select sentences with highest weights
● QR Matrix Decomposition used to avoid 

redundancy in selected sentences



  

Log Likelihood Ratio

● Find words that are significantly more likely to 
appear in this document cluster compared to 
background corpus

● If LLR > 10, word counts as topic signature 
word

● Sentence score is # of topic signature 
words/length of sentence

● Cosine similarity to avoid redundancy



  

Selection Based on LLR

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.28021 0.07925 0.02656 0.01071



  

QR Matrix Decomposition

● Represent each sentence as a vector
● Conroy and O'Leary (2001): dimensions of 

vector are open-class words
● We use log likelihood ratio to determine 

dimensions of vector
● Terms weighted by sentence's position in 

document:

where j = sentence number, n = # of sentences 
in document, g = 10, t = 3

g∗e
−8∗j
n +t



  

QR Matrix Decomposition

● Choose sentence (vector) with highest 
magnitude

● Keep components of remaining sentence 
vectors that are orthogonal to the vector chosen

● Repeat until you reach 100 word summary



  

Selection Based on QR 
Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.23280 0.05685 0.01540 0.00380



  

HMM Training

● Build transition, start, and emission counts
● Turn emissions into covariance matrix/precision 

matrix
● Record column averages
● Store pickle outputs



  

HMM Decoding

● Decode class to manage data structures with 
document set objects

● Process forward and backward recursions

● Observation sequence:

– Build (O
t
 – mu

i
)T Σ-1 (O

t
 – mu

i
) → 1 x 1 matrix

– Apply the χ2-distribution

– Subtract from identity



  

HMM Decoding

● Create ω value from forward recursion
● Calculate γ weight for each sentence
● Final weights from sum of the even states 



  

Selection Based on HMM
and QR Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.17871 0.04425 0.01729 0.00714



  

All Results

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Random 0.15323 0.02842 0.00654 0.00256

LLR 0.28021 0.07925 0.02656 0.01071

QR 0.23280 0.05685 0.01540 0.00380

HMM+QR 0.17871 0.04425 0.01729 0.00714



  

Future Work

● Need to apply the linguistic elements of 
CLASSY

● Revise decoding so that forward and backward 
relatively balance

● Consider updating the features to more 
contemporary methods

● Further parameter tuning  
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Architecture:  Technologies

Python 2.7.9 for all coding tasks

NLTK for tokenization, chunking and sentence segmentation.

pyrouge for evaluation



Architecture: Implementation
Reader:
● Topic parser reads topics and generates filenames
● Document parser reads documents and makes document descriptors

Document Model:
● Sentence Segmentation and “cleaning”
● Tokenization
● NP Chunker

Summarizer - creates summaries

Evaluator - uses pyrouge to call ROUGE-1.5.5.pl



Architecture: Block Diagram



Summarizer

Employed Several Techniques:

Each Technique:
● Computes rank for all sentences normalized from 0 to 1
● Is given a weight from 0 to 1

Weighted sentence rank scores are added together
Overall best sentences are selected from the summary sum



Summary Techniques

● Simple Graph Similarity Measure

● NP Clustering 

● Sentence Location

● Sentence Length

● tf*idf 



Trivial Techniques

● Sentence Position Ranking - Highest sentences get highest rank

● Sentence Length Ranking - Longest sentences get best rank

● tf*idf - All non-stop words get tf*idf computed and the total is divided by 
sentence length.   Sentences with the highest sum of tf*idf get best rank.  
○ We use the Reuters-21578, Distribution 1.0 Corpus of news articles as 

a background corpus.
○ Scores are scaled so the best score is 1.0



Simple Graph Technique

Iterate:
● Build a fully connected graph of the cosine similarity (non-stopword raw 

counts) of the sentences
● Compute the most connected sentence
● Give that sentence the highest score
● Change the weights of its edges to negative to discourage redundancy
● recompute



NP-Clustering Technique
Compute the most connected sentences:
● Use coreference resolution:

○ Find all the pronouns, and replace them with their antecedent
● Compare just the noun phrases of each sentence with every other 

sentence. 
○ Use edit distance for minor forgiveness
○ Normalize casing

● Similarity metric is the count of shared noun phrases
● Rank every sentence with between 0-1, with the highest being 1



Technique Weighting
It is difficult to tell how important each technique is in contributing to the overall 
score.  Because of this, we established a weight generator which did the 
following:

for each technique:
● compute unweighted sentence ranks.

● Iterate weights of each technique from 0 to 1 at intervals of 0.1
○ for each weight set:

■ rank sentences based on new weights
■ generate rouge scores

At the end, the best set of weights is the one with the optimal score!



Optimal Weights at Time of 
Submission

AAANNND... the optimal set of weights turns out to be:  

Disappointing!
It looked like none of our fancy techniques were able to 
even slightly improve the performance of tf*idf by itself.



Results?

Average ROUGE scores for our tf*idf-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.55024 0.52418 0.53571

ROUGE2 0.44809 0.42604 0.43580

ROUGE3 0.38723 0.36788 0.37643

ROUGE4 0.33438 0.31742 0.32490



Results?

Obviously, we had done something wrong.   It’s pretty unlikely that we got three 
times better than the best summarizers!    We figured out pretty quickly that it 
was our method of calling rouge, and reran our weight generator.



Optimal Weights Revisited

Hurray!  Upon running again, discovered that our hard 
work had paid off after all!  The NP-Clustering technique 
proved to be the best, followed closely by “equal weight” 
for every technique.



Optimal Weights

Optimal Technique Weights:

Technique Weight

tf*idf 0.0

Simple Graph 0.0

NP-Clustering 1.0

Sentence Position 0.0

Sentence Length 0.0



NP-Clustering Results

Average ROUGE scores for the NP-Clustering-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23391 0.28553 0.25522

ROUGE2 0.05736 0.07053 0.06272

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584



Equal Weight Results

Average ROUGE scores for our “equal weight” solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23336 0.28628 0.25516

ROUGE2 0.05708 0.07044 0.06251

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584



Simple Graph Results

Average ROUGE scores for the Simple Graph-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.19379 0.25550 0.21845

ROUGE2 0.04473 0.05859 0.05033

ROUGE3 0.01170 0.01505 0.01305

ROUGE4 0.00362 0.00453 0.00400



tf*idf Only Results

Average ROUGE scores for our (tf*idf-only) solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.15341 0.20846 0.17522

ROUGE2 0.03014 0.04037 0.03426

ROUGE3 0.00746 0.01038 0.00863

ROUGE4 0.00242 0.00329 0.00278



Room for Improvement
● Our individual content selection techniques are simple, and much tuning 

and improvement remains to be done
○ Implement LLR and compare with tf*idf
○ Test other vector weighting schemes for cosine similarity in Simple 

Graph technique
○ Merge the Simple Graph style of redundancy reduction into NP 

Clustering technique
● Move coreference into document model so all content selection techniques 

and future ordering/realization techniques can take advantage of it
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Overview: Influences 

 MEAD (Radev et. al., 

2000) 

 Centroid based model 

 Some scoring measures 

for use in extracted 

summaries 

 

 CLASSY (Conroy et. al., 

2004) 

 Log Likelihood Ratio to 

detect features in the 

cluster when 

compared with the 

background corpus.  

 Matrix Reduction 

 



Overview: Corpus 

 Model: 

 AQUAINT and AQUAINT2 

 Document Clusters: 

 AQUAINT and AQUAINT2 

 The clusters of documents to be classified are generally 6-10 articles, 

while the two corpus’ are around 2 million articles.  

 Because of this, we believe that pulling our model and articles to 

summarize from the same corpus’s will not negatively affect the 

results.  



  



Approach: Model Creation 

 Background processing for LLR calculation 

 Sentence breaking 

 Feature vectors 

 Unigrams, trigrams, and named entities.  

 Punctutation removal, stopword removal, and lowercasing were done for 
the creation of n-gram features.  

 NLTK was used for sentence breaking, tokenization, NER and stopword 
removal.  

 The NLTK NE Chunker does a poor job of categorizing the types of 
names, so we kept it in binary mode.  

 Feature types are kept separate to maintain the probability space.  

 Each are kept as their own model, enabling us to load any combination of 
features we want into the summarizer.  



Approach: Centroid Creation 

 Similar preprocessing: sentence breaking and vectorization 

 Feature counts are stored to compute LLR and then binarized.  

 Calculate LLR of all features of a given type. 

 Any feature above a threshold (10.0 for us) is weighted as 1, and any 

feature below is weighted as 0. 

 Allows retention of features on a per type basis.  

 More favorable approach than simply Top N features from all type by 

LLR value. 

 A variable number of active features could capture differences in in 

topic signature that may not be captured when every cluster centroid is 

kept to an arbitrary number of non-zero weighted features. 



Approach: Sentence Extraction 

 Three main goals: 

 Cosine similarity between sentence and centroid 

 The position of the sentence within the document it occurs in 

 Organized in decreasing value from 1 to 0, with the first sentence having one 
and the last having 0. 

 Overlap between the score of the first sentence and the current 
sentence 

 Dot product of the sentence vectors 

 If there’s a headline it is treated as the first sentence 

 Each subscore above is weighted and added together for the total 
score.  

 Makes the first sentence the highest scoring sentence 



Approach: Sentence Extraction 

 Matrix reduction model similar to CLASSY 

 For new sentences, features that have already been present in 

previous sentences are not factored into the score. 

 Avoids redundancy 

 The score recalculated and the new top scoring sentence is added to 

the summary.  

 



Approach: Sentence Ordering and 

Realization 

 The current sentence ordering is nothing more than the order of 

appearance. 

 Document IDs are sorted by date when they first read.  

 Realization simply prints the sentences as they were retrieved.  



Results 

 Trigrams yielded the best results on 2010 data across all ROUGE 

measures.  

 NER was second, followed by unigrams.  

 Combining feature sets did not improve results.  

 Unigrams did better on 2009 data 

 May hint at the difference between the two being negligible, 

depending more on the content being summarized than anything else.  



Results: ROUGE, 2010 data 

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

Trigrams .23115 

 

.06297 

 

.02200 

 

.00900 

 

Unigrams .21506 .05213 .01481 .00481 

Named Entities .22417 .05498 .01585 .00453 

Trigrams+Unigrams .21547 .05354 .01578 .00543 

Trigrams+Named Entities .22972 .06087 .02064 .00727 

Unigrams+Named Entities .21655 .05244 .01508 .00491 

All .21725 .05270 .01607 .00527 



Results: ROUGE, 2009 data 

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

Trigrams .25916 .07706 .02943 .01308 

Unigrams .28889 .08884 .03354 .01512 



Discussion 

 Major source of error could be sparseness of the feature vectors being 
compared to the LLR generated centroid.  

 Caused by the large number of features and matrix reduction 

 The latter could remove most or all the features from a particular vector, 
resulting in sentences with no similarity to the centroid.  

 The system will choose many lead sentences, replicating the LEAD baseline 
algorithm. 

 Could avoid this by using a more MMR based system to avoid redundancy 

 Could add more features to the content selection, downweighting 
sentence position relative to other factors.  

 Change the weights entirely.  

 Change the overlap score to represent the overlap with given topic name, 
rather than the headline.  
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Preprocessing	  and	  Parsing	  

•  XML	  formaBng	  was	  an	  issue	  
•  Both	  corpora	  had	  different	  arrangements	  for	  
the	  data.	  

•  It	  was	  challenging	  to	  scrub	  the	  data	  in	  order	  to	  
parse	  it.	  

•  Needed	  to	  make	  two	  parsers	  in	  Python.	  



Content	  Selec0on	  
•  We	  used	  MEAD	  
•  We	  set	  count-‐IDF	  threshold	  for	  entry	  into	  the	  centroid	  to	  be	  5.	  	  

–  This	  was	  an	  arbitrary	  choice.	  
•  We	  used	  the	  Radev	  et	  al.	  2000	  paper	  to	  set	  up	  other	  constants,	  such	  as	  

the	  minimum	  number	  of	  words	  in	  a	  summarized	  sentence.	  
•  Final	  Score	  =	  c	  *	  centroid-‐score	  +	  p	  *	  posi0on-‐score	  +	  f	  *	  first-‐sentence-‐

similarity-‐score	  	  
•  Centroid	  score	  is	  the	  sum	  of	  count-‐IDF	  for	  each	  term	  found	  in	  a	  sentence.	  
•  First-‐sentence-‐similarity	  –score	  is	  the	  dot-‐product	  between	  a	  sentence	  

and	  the	  first-‐sentence	  designated	  for	  its	  ar0cle.	  
–  The	  first	  sentence	  of	  an	  ar0cle	  is	  its	  headline.	  If	  the	  headline	  is	  smaller	  than	  9	  

words,	  it	  is	  the	  first	  sentence	  in	  the	  ar0cle	  that	  is	  at	  least	  15	  words	  long.	  
•  Posi0on-‐score	  is	  set	  to	  1	  for	  the	  first	  sentence	  in	  an	  ar0cle	  and	  then	  drops	  

frac0onally	  towards	  0	  for	  every	  following	  sentence.	  
•  All	  three	  scores	  were	  normalized	  with	  min-‐max	  normaliza0on.	  
•  C	  =	  3,	  p	  =	  2,	  f	  =	  1	  



Informa0on	  Ordering	  
•  A]er	  we	  sort	  all	  sentences	  related	  to	  a	  topic	  in	  
descending	  order	  of	  final-‐score,	  we	  pick	  the	  
minimum	  number	  of	  top	  highest	  scoring	  
sentences	  that	  help	  us	  reach	  the	  word	  limit.	  

•  Then	  divide	  them	  into	  five	  cohorts.	  
•  Each	  cohort	  represents	  sentences	  found	  in	  
par0cular	  quin0les	  of	  their	  source	  documents.	  

•  We	  follow	  this	  principle:	  
–  If	  a	  selected	  sentence	  was	  located	  in	  the	  n’th	  20%	  of	  a	  
document,	  it	  should	  end	  up	  in	  the	  n’th	  20%	  of	  the	  
summary,	  where	  n	  ranges	  from	  1	  to	  5.	  



Content	  Realiza0on	  

•  We	  just	  copied	  the	  source	  sentence	  into	  the	  
summary	  as	  is.	  



Post-‐processing	  and	  File	  Crea0on	  

•  We	  pasted	  every	  sentence	  on	  a	  new	  line,	  as	  
requested.	  



Results	  

ROUGE1	  
	  

ROUGE2	  	   ROUGE3	  	   ROUGE4	  

Precision	   0.222	   0.04705	   0.01453	   0.00352	  

Recall	   0.19886	   0.04261	   0.01317	   0.00316	  

F-‐Score	   0.20922	   0.04461	   0.01378	   0.00332	  
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