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System Architecture

● Extract document text + 
meta-data, store in Python 
data structures, save 
externally in pickles

● Weight and process 
sentences

● Select best dissimilar 
sentences

● Assemble summary



Background Corpus

● Gigaword corpus 5th Ed. ~ 26 GB text

● whitespace tokenize for alphanumeric 

characters

● Filter stopwords

● 6,295,429 tokens, 163,146 types

● record unigram counts



Text Extraction

● Find and save target document from file 

○ regular expressions 

○ string matching

● Clean xml with ElementTree
○ Save plain text

○ Save meta-data (topic-ids, titles, doc-ids)



Input Pre-Processing

● Sentence-split with NLTK sentence 

tokenizer



Content Selection
1. LLR weighting 3. Check length

2. Remove extraneous tokens 4. Check sentence overlap with existing summary



LLR Calculation

word occurs equally in target text and in the wild
λ(wi) =     

word occurrence is unequal in both environments

1. Compare counts for word in target text and 
background corpus

2. wi = -2 log λ ( wi ) – score for word wi
3. Sentence weight is count of words in sentence 

with LLR score > 10 normalized by sentence 
length.



Sentence Filtering
● Remove extraneous tokens
– Common forms of contact information
– Uninformative “phrases”
– Common non-alphanumeric “tokens”

● Keep relatively long sentences (> 8 words)

● Check word overlap with existing summary 
sentences
– Simple cosine similarity score
– Omit if similarity > 0.5



Info Ordering / Content Realization

● arrangement follows document order by 
doc ID (time stamp)

● intra-document order disregarded

● sentences realized as they appear in the 
document or in whatever form they take 
after shortening



Lead:

LLR + 
processing:

Results



Analysis and Issues
We have given priority to the afforestation in the habitats.
Shaanxi has so far established 13 giant pandas protection zones and nature 
reserves focused on pandas' habitats.
The Qinling panda has been identified as a sub-species of the giant panda that 
mainly resides in southwestern Sichuan province.
Nature preserve workers in northwest China's Gansu Province have 
formulated a rescue plan to save giant pandas from food shortage caused by 
arrow bamboo flowering.
Currently more than 1,500 giant pandas live wild in China, according to a 
survey by the State Forestry Administration.

● Ordering of sentences affects the impression
● Non-coreferred pronouns are confusing
● Irrelevant information takes up summary space
● Word removal approach relies too much on punctuation



Resources
● basic design, LLR calculation: 

– Jurafsky & Martin, 2008 

● filtering sentences by length, checking 
sentence similarity:
– Hong & Nenkova, 2014

● computing LLR with Gigaworld: 
– Parker & al., 2011



Future Work
Content Selection

● coreference resolution - CLASSY (Conroy et al., 
2004)

● sentence position

Information Ordering

● clustering sentences based on similarity (word 
overlap and other semantic similarity measures) 
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Random Baseline

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.15323 0.02842 0.00654 0.00256



  

CLASSY Overview

● Hidden Markov Model trained on features of 
summary sentences of training data

● Used to compute weights for each sentence in 
test data

● Select sentences with highest weights
● QR Matrix Decomposition used to avoid 

redundancy in selected sentences



  

Log Likelihood Ratio

● Find words that are significantly more likely to 
appear in this document cluster compared to 
background corpus

● If LLR > 10, word counts as topic signature 
word

● Sentence score is # of topic signature 
words/length of sentence

● Cosine similarity to avoid redundancy



  

Selection Based on LLR

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.28021 0.07925 0.02656 0.01071



  

QR Matrix Decomposition

● Represent each sentence as a vector
● Conroy and O'Leary (2001): dimensions of 

vector are open-class words
● We use log likelihood ratio to determine 

dimensions of vector
● Terms weighted by sentence's position in 

document:

where j = sentence number, n = # of sentences 
in document, g = 10, t = 3

g∗e
−8∗j
n +t



  

QR Matrix Decomposition

● Choose sentence (vector) with highest 
magnitude

● Keep components of remaining sentence 
vectors that are orthogonal to the vector chosen

● Repeat until you reach 100 word summary



  

Selection Based on QR 
Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.23280 0.05685 0.01540 0.00380



  

HMM Training

● Build transition, start, and emission counts
● Turn emissions into covariance matrix/precision 

matrix
● Record column averages
● Store pickle outputs



  

HMM Decoding

● Decode class to manage data structures with 
document set objects

● Process forward and backward recursions

● Observation sequence:

– Build (O
t
 – mu

i
)T Σ-1 (O

t
 – mu

i
) → 1 x 1 matrix

– Apply the χ2-distribution

– Subtract from identity



  

HMM Decoding

● Create ω value from forward recursion
● Calculate γ weight for each sentence
● Final weights from sum of the even states 



  

Selection Based on HMM
and QR Decomposition

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

0.17871 0.04425 0.01729 0.00714



  

All Results

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Random 0.15323 0.02842 0.00654 0.00256

LLR 0.28021 0.07925 0.02656 0.01071

QR 0.23280 0.05685 0.01540 0.00380

HMM+QR 0.17871 0.04425 0.01729 0.00714



  

Future Work

● Need to apply the linguistic elements of 
CLASSY

● Revise decoding so that forward and backward 
relatively balance

● Consider updating the features to more 
contemporary methods

● Further parameter tuning  
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Architecture:  Technologies

Python 2.7.9 for all coding tasks

NLTK for tokenization, chunking and sentence segmentation.

pyrouge for evaluation



Architecture: Implementation
Reader:
● Topic parser reads topics and generates filenames
● Document parser reads documents and makes document descriptors

Document Model:
● Sentence Segmentation and “cleaning”
● Tokenization
● NP Chunker

Summarizer - creates summaries

Evaluator - uses pyrouge to call ROUGE-1.5.5.pl



Architecture: Block Diagram



Summarizer

Employed Several Techniques:

Each Technique:
● Computes rank for all sentences normalized from 0 to 1
● Is given a weight from 0 to 1

Weighted sentence rank scores are added together
Overall best sentences are selected from the summary sum



Summary Techniques

● Simple Graph Similarity Measure

● NP Clustering 

● Sentence Location

● Sentence Length

● tf*idf 



Trivial Techniques

● Sentence Position Ranking - Highest sentences get highest rank

● Sentence Length Ranking - Longest sentences get best rank

● tf*idf - All non-stop words get tf*idf computed and the total is divided by 
sentence length.   Sentences with the highest sum of tf*idf get best rank.  
○ We use the Reuters-21578, Distribution 1.0 Corpus of news articles as 

a background corpus.
○ Scores are scaled so the best score is 1.0



Simple Graph Technique

Iterate:
● Build a fully connected graph of the cosine similarity (non-stopword raw 

counts) of the sentences
● Compute the most connected sentence
● Give that sentence the highest score
● Change the weights of its edges to negative to discourage redundancy
● recompute



NP-Clustering Technique
Compute the most connected sentences:
● Use coreference resolution:

○ Find all the pronouns, and replace them with their antecedent
● Compare just the noun phrases of each sentence with every other 

sentence. 
○ Use edit distance for minor forgiveness
○ Normalize casing

● Similarity metric is the count of shared noun phrases
● Rank every sentence with between 0-1, with the highest being 1



Technique Weighting
It is difficult to tell how important each technique is in contributing to the overall 
score.  Because of this, we established a weight generator which did the 
following:

for each technique:
● compute unweighted sentence ranks.

● Iterate weights of each technique from 0 to 1 at intervals of 0.1
○ for each weight set:

■ rank sentences based on new weights
■ generate rouge scores

At the end, the best set of weights is the one with the optimal score!



Optimal Weights at Time of 
Submission

AAANNND... the optimal set of weights turns out to be:  

Disappointing!
It looked like none of our fancy techniques were able to 
even slightly improve the performance of tf*idf by itself.



Results?

Average ROUGE scores for our tf*idf-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.55024 0.52418 0.53571

ROUGE2 0.44809 0.42604 0.43580

ROUGE3 0.38723 0.36788 0.37643

ROUGE4 0.33438 0.31742 0.32490



Results?

Obviously, we had done something wrong.   It’s pretty unlikely that we got three 
times better than the best summarizers!    We figured out pretty quickly that it 
was our method of calling rouge, and reran our weight generator.



Optimal Weights Revisited

Hurray!  Upon running again, discovered that our hard 
work had paid off after all!  The NP-Clustering technique 
proved to be the best, followed closely by “equal weight” 
for every technique.



Optimal Weights

Optimal Technique Weights:

Technique Weight

tf*idf 0.0

Simple Graph 0.0

NP-Clustering 1.0

Sentence Position 0.0

Sentence Length 0.0



NP-Clustering Results

Average ROUGE scores for the NP-Clustering-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23391 0.28553 0.25522

ROUGE2 0.05736 0.07053 0.06272

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584



Equal Weight Results

Average ROUGE scores for our “equal weight” solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.23336 0.28628 0.25516

ROUGE2 0.05708 0.07044 0.06251

ROUGE3 0.01612 0.01969 0.01758

ROUGE4 0.00533 0.00657 0.00584



Simple Graph Results

Average ROUGE scores for the Simple Graph-only solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.19379 0.25550 0.21845

ROUGE2 0.04473 0.05859 0.05033

ROUGE3 0.01170 0.01505 0.01305

ROUGE4 0.00362 0.00453 0.00400



tf*idf Only Results

Average ROUGE scores for our (tf*idf-only) solution:

ROUGE Technique Recall Precision F-Score

ROUGE1 0.15341 0.20846 0.17522

ROUGE2 0.03014 0.04037 0.03426

ROUGE3 0.00746 0.01038 0.00863

ROUGE4 0.00242 0.00329 0.00278



Room for Improvement
● Our individual content selection techniques are simple, and much tuning 

and improvement remains to be done
○ Implement LLR and compare with tf*idf
○ Test other vector weighting schemes for cosine similarity in Simple 

Graph technique
○ Merge the Simple Graph style of redundancy reduction into NP 

Clustering technique
● Move coreference into document model so all content selection techniques 

and future ordering/realization techniques can take advantage of it
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 Sentence Extraction 

 Sentence Ordering 

 Realization 
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Overview: Influences 

 MEAD (Radev et. al., 

2000) 

 Centroid based model 

 Some scoring measures 

for use in extracted 

summaries 

 

 CLASSY (Conroy et. al., 

2004) 

 Log Likelihood Ratio to 

detect features in the 

cluster when 

compared with the 

background corpus.  

 Matrix Reduction 

 



Overview: Corpus 

 Model: 

 AQUAINT and AQUAINT2 

 Document Clusters: 

 AQUAINT and AQUAINT2 

 The clusters of documents to be classified are generally 6-10 articles, 

while the two corpus’ are around 2 million articles.  

 Because of this, we believe that pulling our model and articles to 

summarize from the same corpus’s will not negatively affect the 

results.  



  



Approach: Model Creation 

 Background processing for LLR calculation 

 Sentence breaking 

 Feature vectors 

 Unigrams, trigrams, and named entities.  

 Punctutation removal, stopword removal, and lowercasing were done for 
the creation of n-gram features.  

 NLTK was used for sentence breaking, tokenization, NER and stopword 
removal.  

 The NLTK NE Chunker does a poor job of categorizing the types of 
names, so we kept it in binary mode.  

 Feature types are kept separate to maintain the probability space.  

 Each are kept as their own model, enabling us to load any combination of 
features we want into the summarizer.  



Approach: Centroid Creation 

 Similar preprocessing: sentence breaking and vectorization 

 Feature counts are stored to compute LLR and then binarized.  

 Calculate LLR of all features of a given type. 

 Any feature above a threshold (10.0 for us) is weighted as 1, and any 

feature below is weighted as 0. 

 Allows retention of features on a per type basis.  

 More favorable approach than simply Top N features from all type by 

LLR value. 

 A variable number of active features could capture differences in in 

topic signature that may not be captured when every cluster centroid is 

kept to an arbitrary number of non-zero weighted features. 



Approach: Sentence Extraction 

 Three main goals: 

 Cosine similarity between sentence and centroid 

 The position of the sentence within the document it occurs in 

 Organized in decreasing value from 1 to 0, with the first sentence having one 
and the last having 0. 

 Overlap between the score of the first sentence and the current 
sentence 

 Dot product of the sentence vectors 

 If there’s a headline it is treated as the first sentence 

 Each subscore above is weighted and added together for the total 
score.  

 Makes the first sentence the highest scoring sentence 



Approach: Sentence Extraction 

 Matrix reduction model similar to CLASSY 

 For new sentences, features that have already been present in 

previous sentences are not factored into the score. 

 Avoids redundancy 

 The score recalculated and the new top scoring sentence is added to 

the summary.  

 



Approach: Sentence Ordering and 

Realization 

 The current sentence ordering is nothing more than the order of 

appearance. 

 Document IDs are sorted by date when they first read.  

 Realization simply prints the sentences as they were retrieved.  



Results 

 Trigrams yielded the best results on 2010 data across all ROUGE 

measures.  

 NER was second, followed by unigrams.  

 Combining feature sets did not improve results.  

 Unigrams did better on 2009 data 

 May hint at the difference between the two being negligible, 

depending more on the content being summarized than anything else.  



Results: ROUGE, 2010 data 

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

Trigrams .23115 

 

.06297 

 

.02200 

 

.00900 

 

Unigrams .21506 .05213 .01481 .00481 

Named Entities .22417 .05498 .01585 .00453 

Trigrams+Unigrams .21547 .05354 .01578 .00543 

Trigrams+Named Entities .22972 .06087 .02064 .00727 

Unigrams+Named Entities .21655 .05244 .01508 .00491 

All .21725 .05270 .01607 .00527 



Results: ROUGE, 2009 data 

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

Trigrams .25916 .07706 .02943 .01308 

Unigrams .28889 .08884 .03354 .01512 



Discussion 

 Major source of error could be sparseness of the feature vectors being 
compared to the LLR generated centroid.  

 Caused by the large number of features and matrix reduction 

 The latter could remove most or all the features from a particular vector, 
resulting in sentences with no similarity to the centroid.  

 The system will choose many lead sentences, replicating the LEAD baseline 
algorithm. 

 Could avoid this by using a more MMR based system to avoid redundancy 

 Could add more features to the content selection, downweighting 
sentence position relative to other factors.  

 Change the weights entirely.  

 Change the overlap score to represent the overlap with given topic name, 
rather than the headline.  
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Preprocessing	
  and	
  Parsing	
  

•  XML	
  formaBng	
  was	
  an	
  issue	
  
•  Both	
  corpora	
  had	
  different	
  arrangements	
  for	
  
the	
  data.	
  

•  It	
  was	
  challenging	
  to	
  scrub	
  the	
  data	
  in	
  order	
  to	
  
parse	
  it.	
  

•  Needed	
  to	
  make	
  two	
  parsers	
  in	
  Python.	
  



Content	
  Selec0on	
  
•  We	
  used	
  MEAD	
  
•  We	
  set	
  count-­‐IDF	
  threshold	
  for	
  entry	
  into	
  the	
  centroid	
  to	
  be	
  5.	
  	
  

–  This	
  was	
  an	
  arbitrary	
  choice.	
  
•  We	
  used	
  the	
  Radev	
  et	
  al.	
  2000	
  paper	
  to	
  set	
  up	
  other	
  constants,	
  such	
  as	
  

the	
  minimum	
  number	
  of	
  words	
  in	
  a	
  summarized	
  sentence.	
  
•  Final	
  Score	
  =	
  c	
  *	
  centroid-­‐score	
  +	
  p	
  *	
  posi0on-­‐score	
  +	
  f	
  *	
  first-­‐sentence-­‐

similarity-­‐score	
  	
  
•  Centroid	
  score	
  is	
  the	
  sum	
  of	
  count-­‐IDF	
  for	
  each	
  term	
  found	
  in	
  a	
  sentence.	
  
•  First-­‐sentence-­‐similarity	
  –score	
  is	
  the	
  dot-­‐product	
  between	
  a	
  sentence	
  

and	
  the	
  first-­‐sentence	
  designated	
  for	
  its	
  ar0cle.	
  
–  The	
  first	
  sentence	
  of	
  an	
  ar0cle	
  is	
  its	
  headline.	
  If	
  the	
  headline	
  is	
  smaller	
  than	
  9	
  

words,	
  it	
  is	
  the	
  first	
  sentence	
  in	
  the	
  ar0cle	
  that	
  is	
  at	
  least	
  15	
  words	
  long.	
  
•  Posi0on-­‐score	
  is	
  set	
  to	
  1	
  for	
  the	
  first	
  sentence	
  in	
  an	
  ar0cle	
  and	
  then	
  drops	
  

frac0onally	
  towards	
  0	
  for	
  every	
  following	
  sentence.	
  
•  All	
  three	
  scores	
  were	
  normalized	
  with	
  min-­‐max	
  normaliza0on.	
  
•  C	
  =	
  3,	
  p	
  =	
  2,	
  f	
  =	
  1	
  



Informa0on	
  Ordering	
  
•  A]er	
  we	
  sort	
  all	
  sentences	
  related	
  to	
  a	
  topic	
  in	
  
descending	
  order	
  of	
  final-­‐score,	
  we	
  pick	
  the	
  
minimum	
  number	
  of	
  top	
  highest	
  scoring	
  
sentences	
  that	
  help	
  us	
  reach	
  the	
  word	
  limit.	
  

•  Then	
  divide	
  them	
  into	
  five	
  cohorts.	
  
•  Each	
  cohort	
  represents	
  sentences	
  found	
  in	
  
par0cular	
  quin0les	
  of	
  their	
  source	
  documents.	
  

•  We	
  follow	
  this	
  principle:	
  
–  If	
  a	
  selected	
  sentence	
  was	
  located	
  in	
  the	
  n’th	
  20%	
  of	
  a	
  
document,	
  it	
  should	
  end	
  up	
  in	
  the	
  n’th	
  20%	
  of	
  the	
  
summary,	
  where	
  n	
  ranges	
  from	
  1	
  to	
  5.	
  



Content	
  Realiza0on	
  

•  We	
  just	
  copied	
  the	
  source	
  sentence	
  into	
  the	
  
summary	
  as	
  is.	
  



Post-­‐processing	
  and	
  File	
  Crea0on	
  

•  We	
  pasted	
  every	
  sentence	
  on	
  a	
  new	
  line,	
  as	
  
requested.	
  



Results	
  

ROUGE1	
  
	
  

ROUGE2	
  	
   ROUGE3	
  	
   ROUGE4	
  

Precision	
   0.222	
   0.04705	
   0.01453	
   0.00352	
  

Recall	
   0.19886	
   0.04261	
   0.01317	
   0.00316	
  

F-­‐Score	
   0.20922	
   0.04461	
   0.01378	
   0.00332	
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