
Automatic Summarization
Project

Anca Burducea
Joe Mulvey

Nate Perkins

April 28, 2015

Outline

Overview

Data cleanup

Content selection
Sentence scoring
Redundancy reduction
Example

Results and conclusions

System overview

I Pyhton 3.4

I TF-IDF sentence scoring

System overview

I Pyhton 3.4

I TF-IDF sentence scoring

System overview

I Pyhton 3.4

I TF-IDF sentence scoring

Outline

Overview

Data cleanup

Content selection
Sentence scoring
Redundancy reduction
Example

Results and conclusions

Data cleanup

For each news story N in topic T:
I find the file F containing N

I check files that have LDC document structure (<DOC>)
I check file names (regex)

I clean/parse F
I XML parse on <DOC>...<\DOC> structures

I find N inside F

I return N as an LDCDoc (timestamp, title, text ...)

Outline

Overview

Data cleanup

Content selection
Sentence scoring
Redundancy reduction
Example

Results and conclusions

Content Selection

Sentence scoring

Sentence S: [– + + * + – – + * * –]

– meaningless word → punctuation, numbers, stopwords

+ meaningful word → the rest

* topic signature word → top 100 words scored with TF*IDF

Score(S) =

∑
w∈TS

tf-idf(w)

| meaningful words |

Sentence scoring

Sentence S: [– + + * + – – + * * –]

– meaningless word → punctuation, numbers, stopwords

+ meaningful word → the rest

* topic signature word → top 100 words scored with TF*IDF

Score(S) =

∑
w∈TS

tf-idf(w)

| meaningful words |

Redundancy reduction

Rescore sentence list according to similarity with already selected
sentences:

NewScore(Si) = Score(Si)× (1− Sim(Si , LS))

Redundancy reduction

Rescore sentence list according to similarity with already selected
sentences:

NewScore(Si) = Score(Si)× (1− Sim(Si , LS))

Topic signature example

nausherwani

rebel

sporadic

rape

tribal

pakistan

people

rocket

cheema

left

gas

tribesman

Summary example

Lasi said Sunday that about 5,000 Bugti tribesmen have

taken up positions in mountains near Dera Bugti.

Dera Bugti lies about 50 kilometers (30 miles) from

Pakistan’s main gas field at Sui.

Baluchistan was rocked by a tribal insurgency in the 1970s

and violence has surged again this year.

The tribesmen have reportedly set up road blocks and dug

trenches along roads into Dera Bugti.

Thousands of troops moved into Baluchistan after a rocket

barrage on the gas plant at Sui left eight people dead

in January.

"We have every right to defend ourselves," Bugti told AP

by satellite telephone from the town.

Outline

Overview

Data cleanup

Content selection
Sentence scoring
Redundancy reduction
Example

Results and conclusions

ROUGE scores

R P F

ROUGE-1 0.25909 0.30675 0.27987

ROUGE-2 0.06453 0.07577 0.06942

ROUGE-3 0.01881 0.02138 0.01992

ROUGE-4 0.00724 0.00774 0.00745

Further improvements

I try new sentence scoring methods
I LLR
I sentence position
I deep methods

I use a classification approach for sentence selection

Further improvements

I try new sentence scoring methods
I LLR
I sentence position
I deep methods

I use a classification approach for sentence selection

Summarization Task
LING 573

Team Members

 John Ho

 Nick Chen

 Oscar Castaneda

Contents

 System Architecture

 General overview

 Content Selection system view

 Current results

 Issues

 Successes

 Related resources

System Architecture

Content Selection

Current Results

Sample output

 The sheriff's initial estimate of as many as 25 dead in the Columbine High

massacre was off the mark apparently because the six SWAT teams that

swept the building counted some victims more than once.

 Sheriff John Stone said Tuesday afternoon that there could be as many as

25 dead.

 The discrepancy occurred because the SWAT teams that picked their way

past bombs and bodies in an effort to secure building covered

overlapping areas, said sheriff's spokesman Steve Davis.

 "There were so many different SWAT teams in there, we were constantly

getting different counts," Davis said. 96 words

Redundant

Redundant

Topic?

Successes

 The pipeline works end to end and is built with a model in which we can

easily plug in new parts to it

 The content selection step selects important sentences

 The project reuses code libraries from external resources that have been

proved to work

 Evaluation results are consistent with our expectations for the first stage of

the project

Issues

 Processing related (Solved now):

 Non-standard XML

 Inconsistent naming scheme

 Inconsistent formatting

 Summarization related (Need to be solved):

 ROUGE scores still low

 Need to test content selection

 Need to tune content selection

 Need to improve our content ordering and content realization pipeline

 Duplicated content

 Better topic surfacing

References and Resources

 Dragomir R. Radev, Sasha Blair-Goldensohn, and Zhu Zhang. 2004.

Experiments in Single and MultiDocument Summarization Using MEAD

University Of Michigan

 Scikit-learn: Machine Learning in Python, Pedregosa et al., (2011). JMLR 12,

pp. 2825-2830, 2011

 Steven Bird, Edward Loper and Ewan Klein (2009). Natural Language

Processing with Python.. OReilly Media Inc.

+

P.A.N.D.A.S.
(Progressive Automatic Natural Document Abbreviation System)

Ceara Chewning, Rebecca Myhre, Katie Vedder

+
Related Reading

Günes Erkan and Dragomir R. Radev. 2004. LexRank: Graph-
based Lexical Centrality as Salience in Text Summarization.

Journal of Artificial Intelligence Research, 22:457–479.

+
System Architecture

+
Results

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

Top N 0.21963 0.05173 0.01450 0.00461

Random 0.16282 0.02784 0.00812 0.00334

MEAD 0.22641 0.05966 0.01797 0.00744

PANDAS 0.24886 0.06636 0.02031 0.00606

+
Content Selection

n  Graph-based, lexical approach

n  IDF-modified cosine similarity equation (Erkan and Radev, 2004):

n  Sentences scored by degree of vertex

n  Redundancy accounted for with a second threshold

+
Information Ordering

n  Nothing fancy

n  Sentences ordered by decreasing saliency

+
Content Realization

n  Nothing fancy

n  Sentences realized as they appeared in the original document

+

Issues:
n  More sophisticated node scoring method was unsuccessful

n  “Social networking” approach (increasing score of a node based on
degree of neighboring nodes) significantly impacted ROUGE scores

n  Scored nodes by degree instead

Successes
n  Redundancy threshold worked well, based on manual evaluation

n  Depressed ROUGE-3 and ROUGE-4 scores

LING 573 Deliverable #2
George Cooper, Wei Dai, Kazuki Shintani

System Overview

Input Docs

Annotated
Gigaword
corpus

Unigram counter Unigram
counts

Stanford CoreNLP

Sentence Extraction

Summary

Processed
Input Docs

sentence
segmentation,
lemmatization,
tokenization

Content Selection

Content Selection

Algorithm Overview

● Modeled after KLSum algorithm
● Goal: Minimize KL Divergence/maximize

cosine similarity between summary and
original documents

● Testing every possible summary is O(2n), so
we used a greedy algorithm

● Start with an empty summary M
● Select the sentence S that has not yet been

selected that maximizes the similarity
between M + S and the whole document
collection

● Repeat until no more sentences can be
added without violating the length limit

Algorithm Details

Vector Weighting
Strategies

Creating vectors: Raw Counts

Each element of the vector corresponds to the
unigram count of the document/sentence as
lemmatized by Stanford CoreNLP.

Creating vectors: TF-IDF

Weight raw counts using a variant of TF-IDF:

(nv/Nv)log(Nc/nc)

● nv: raw count of the unigram in the vector
● Nv: total count of all unigrams in the vector
● nc: raw count of the unigram in the

background corpus (Annotated Gigaword)
● Nc: total count of all unigrams in the

background corpus

Creating vectors: Log-likelihood
ratio

● Weight raw counts using log-likelihood ratio
● We used Annotated Gigaword corpus as the

background corpus

Creating vectors: Normalized log-
likelihood ratio

● Weight the vector for the whole document
collection using log-likelihood

● Weight each item in individual sentences as
wb(ws/ns)
○ wb: weight of the item in the background corpus
○ ws: raw unigram count in sentence vector
○ ns: total of all unigram counts in the sentence vector

● Intended to correct preference for shorter
sentences

Filtering stop words

● 85 lemmas
● Manually compiled from the most common

lemmas in the Gigaword corpus
● Stop words ignored when creating all vectors

Results

Results: Stop words filtered out

Comparison Weighting ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

KL divergence raw counts 0.28206 0.07495 0.02338 0.00777

KL divergence TF-IDF 0.28401 0.07636 0.02440 0.00798

KL divergence LL 0.29039 0.08304 0.02889 0.00984

KL divergence LL (normalized) 0.27824 0.07306 0.02268 0.00746

cosine similarity raw counts 0.28232 0.07336 0.02114 0.00686

cosine similarity TF-IDF 0.28602 0.07571 0.02305 0.00758

cosine similarity LL 0.26698 0.06646 0.01976 0.00632

cosine similarity LL (normalized) 0.27016 0.06603 0.01946 0.00604

Results: Stop words not filtered out

Comparison Weighting ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

KL divergence raw counts 0.24185 0.06338 0.02266 0.00778

KL divergence TF-IDF 0.25736 0.06790 0.02301 0.00814

KL divergence LL 0.28682 0.08110 0.02716 0.00875

KL divergence LL (normalized) 0.27813 0.07283 0.02248 0.00718

cosine similarity raw counts 0.18632 0.04202 0.01345 0.00450

cosine similarity TF-IDF 0.24422 0.05887 0.01918 0.00612

cosine similarity LL 0.26686 0.06694 0.02031 0.00655

cosine similarity LL (normalized) 0.26842 0.06525 0.01929 0.00604

Discussion

Issues

● We need to remove the dateline (e.g.
SEATTLE (AP)) as a preprocessing step

● There is too much redundancy in some of
the summaries (no explicit method to handle
redundancy in our approach yet)

● The last sentence is often very short and not
useful

Potential Improvements

● Expand the search space a little
● Replace pronouns with their referents as a

preprocessing step
● Take advantage of similarities, particularly

synonyms, between different words using
WordNet or word embeddings for better
comparison of vectors

Baseline summarization
system
Veljko Miljanic –Abdelrahman Baligh - Ahmed Aly
4/28/2015

Introduction
- End to end document summarization system
- We have approached extractive summarization as sentence ranking problem
- We want to build ML sentence ranker that can combine variety of features
- Baseline rankers

lead
log likelihood

- Content ordering (placeholder): output sentences in order of their rank
- Text realization (placeholder): concatenate top sentences

System architecture

Document
Sentence
Tokenizer

Ranker
Content
Ordering

Realization Summary

Content
Summarizer AQUAINT and AQUAINT2 corporas

System architecture (cont.)
Sentence tokenizer:
We are using NLTK sentence tokenizer to split documents into sentences.

Ranker:
- We plan on building ML ranker to be able to combine variety of features:

log likelihood ratio, position of sentence in document, …

- Pointwise ranker: regression target will be sentence ROUGE score

- Pairwise ranker: classifier target generated based on sentence order by their ROUGE scor

System architecture (cont.)
Log Likelihood Ratio Baseline:

-We’ve used log likelihood scores to serve as our baseline ranking scheme

- Sentences are ranked by LLR weights and we pick up top N that fit into the summary size

- Background corpora is union of the entire AQUAINT and AQUAINT2 corpora

- All words converted to lowercase prior to computing LLR

- LLR threshold is tuned on devtest set (14)

System architecture (cont.)
Ranker(LLR): Threshold Tuning

THR ROUGE 1 ROUGE-2 ROUGE-3 ROUGE-4

1 0.15062 0.03245 0.00777 0.0021

2 0.15266 0.03078 0.00683 0.00118

3 0.15039 0.03333 0.0073 0.00137

4 0.15801 0.0337 0.00803 0.00264

5 0.1656 0.03601 0.01001 0.00309

6 0.16077 0.03532 0.01034 0.00349

7 0.16723 0.03935 0.01202 0.00438

8 0.17387 0.04192 0.01286 0.00439

9 0.17721 0.04323 0.01394 0.00557

10 0.17407 0.03833 0.01188 0.0043

11 0.18244 0.04457 0.01581 0.00732

12 0.16909 0.03716 0.01135 0.0037

13 0.1706 0.04029 0.01408 0.00531

14 0.19069 0.0478 0.01825 0.0078

15 0.17903 0.04466 0.01626 0.00674

16 0.18541 0.04679 0.01579 0.00628

17 0.18557 0.04663 0.01559 0.00609

18 0.18899 0.04771 0.01611 0.00643

19 0.18584 0.04675 0.01624 0.00654

20 0.18794 0.04887 0.01871 0.00905

System architecture (cont.)
Ranker (SVR):
- We started our experiments by trying to train a support vector machine regresser to estimate

the ROUGE scores of sentences and sort them accordingly.
- We are using scikit-learn as our ML toolkit.

SVR Ranker

List of sentences Feature Extraction Support vector regresser

Training data
Model

parameters

ROUGE Score per
sentence

Sorted List of sentences

System architecture (cont.)
Ranker (SVR):
- We are still working on this ranker as we are having some issues with the convergence of the

regression algorithm.

- Another approach that we are still working on is to train a supervised classifier to pairwise
compare sentences and produce a sorted list of sentences according to their importance.

- For the next deliverable we will be working on extending our features and try different
regression algorithms

System architecture (cont.)
Information ordering:
-For now, sentences are ordered in a descending order according to their ranker scores

Content Realization:
-We just join the top sentences with a new line separator in between them.

Results

Lead sentences baseline information (just taking the first n sentences from the first document
in the docset)
1 ROUGE-1 Average_R: 0.18369 (95%-conf.int. 0.15940 - 0.20823)
1 ROUGE-2 Average_R: 0.05075 (95%-conf.int. 0.04034 - 0.06183)
1 ROUGE-3 Average_R: 0.01859 (95%-conf.int. 0.01317 - 0.02523)
1 ROUGE-4 Average_R: 0.00666 (95%-conf.int. 0.00371 - 0.01036)

LLR ranker results
1 ROUGE-1 Average_R: 0.19069 (95%-conf.int. 0.16378 - 0.21615)
1 ROUGE-2 Average_R: 0.04780 (95%-conf.int. 0.03693 - 0.05908)
1 ROUGE-3 Average_R: 0.01825 (95%-conf.int. 0.01261 - 0.02485)
1 ROUGE-4 Average_R: 0.00780 (95%-conf.int. 0.00356 - 0.01324)

http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/

Issues

-Most of the work went on reading AQUAINT and AQUAINT-2 corpora because data is
inconsistent and also format between corpora is different. AQUAINT can't be read with XML
parser while AQUAINT-2 could

-The SVR regresser didn’t converge, that is mainly because we haven’t yet extracted enough
features. (We will be working on this one for the next deliverable)

-We haven’t yet implemented filtering for text that usually isn’t part of summary (e.g. citations)

-For most of the summaries we are seeing duplicate sentences. We are still working on a module
that would prevent similar sentences to show up in the summary

	D2-anca-joe-nate
	OJN_PresentationD2
	KCR_D2_presentation
	GWK_D2_presentation
	AAV_D2_presentation

