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Data cleanup

For each news story N in topic T:
I find the file F containing N

I check files that have LDC document structure (<DOC>)
I check file names (regex)

I clean/parse F
I XML parse on <DOC>...<\DOC> structures

I find N inside F

I return N as an LDCDoc (timestamp, title, text ...)
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Content Selection



Sentence scoring

Sentence S: [ – + + * + – – + * * – ]

– meaningless word → punctuation, numbers, stopwords

+ meaningful word → the rest

* topic signature word → top 100 words scored with TF*IDF

Score(S) =

∑
w∈TS

tf-idf(w)

| meaningful words |
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Redundancy reduction

Rescore sentence list according to similarity with already selected
sentences:

NewScore(Si ) = Score(Si )× (1− Sim(Si , LS))
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Topic signature example

nausherwani

rebel

sporadic

rape

tribal

pakistan

people

rocket

cheema

left

gas

tribesman



Summary example

Lasi said Sunday that about 5,000 Bugti tribesmen have

taken up positions in mountains near Dera Bugti.

Dera Bugti lies about 50 kilometers (30 miles) from

Pakistan’s main gas field at Sui.

Baluchistan was rocked by a tribal insurgency in the 1970s

and violence has surged again this year.

The tribesmen have reportedly set up road blocks and dug

trenches along roads into Dera Bugti.

Thousands of troops moved into Baluchistan after a rocket

barrage on the gas plant at Sui left eight people dead

in January.

"We have every right to defend ourselves," Bugti told AP

by satellite telephone from the town.
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ROUGE scores

R P F

ROUGE-1 0.25909 0.30675 0.27987

ROUGE-2 0.06453 0.07577 0.06942

ROUGE-3 0.01881 0.02138 0.01992

ROUGE-4 0.00724 0.00774 0.00745



Further improvements

I try new sentence scoring methods
I LLR
I sentence position
I deep methods

I use a classification approach for sentence selection
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Current Results



Sample output

 The sheriff's initial estimate of as many as 25 dead in the Columbine High 

massacre was off the mark apparently because the six SWAT teams that 

swept the building counted some victims more than once.

 Sheriff John Stone said Tuesday afternoon that there could be as many as 

25 dead.

 The discrepancy occurred because the SWAT teams that picked their way 

past bombs and bodies in an effort to secure building covered 

overlapping areas, said sheriff's spokesman Steve Davis.

 "There were so many different SWAT teams in there, we were constantly 

getting different counts," Davis said.    96 words

Redundant

Redundant

Topic?



Successes

 The pipeline works end to end and is built with a model in which we can 

easily plug in new parts to it

 The content selection step selects important sentences

 The project reuses code libraries from external resources that have been 

proved to work

 Evaluation results are consistent with our expectations for the first stage of 

the project



Issues

 Processing related (Solved now):

 Non-standard XML

 Inconsistent naming scheme

 Inconsistent formatting

 Summarization related (Need to be solved):

 ROUGE scores still low

 Need to test content selection 

 Need to tune content selection

 Need to improve our content ordering and content realization pipeline

 Duplicated content

 Better topic surfacing
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+
Results   

ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

Top N 0.21963 0.05173 0.01450 0.00461 

Random 0.16282 0.02784 0.00812 0.00334 

MEAD 0.22641 0.05966 0.01797 0.00744 

PANDAS 0.24886 0.06636 0.02031 0.00606 



+
Content Selection 

n  Graph-based, lexical approach 

n  IDF-modified cosine similarity equation (Erkan and Radev, 2004): 

n  Sentences scored by degree of vertex 

n  Redundancy accounted for with a second threshold  



+
Information Ordering 

n  Nothing fancy 

n  Sentences ordered by decreasing saliency 



+
Content Realization 

n  Nothing fancy 

n  Sentences realized as they appeared in the original document 



+

Issues:  
n  More sophisticated node scoring method was unsuccessful 

n  “Social networking” approach (increasing score of a node based on 
degree of neighboring nodes) significantly impacted ROUGE scores 

n  Scored nodes by degree instead 

Successes  
n  Redundancy threshold worked well, based on manual evaluation 

n  Depressed ROUGE-3 and ROUGE-4 scores 



LING 573 Deliverable #2
George Cooper, Wei Dai, Kazuki Shintani



System Overview

Input Docs

Annotated
Gigaword 
corpus

Unigram counter Unigram 
counts

Stanford CoreNLP

Sentence Extraction

Summary

Processed 
Input Docs

sentence 
segmentation, 
lemmatization, 
tokenization

Content Selection



Content Selection



Algorithm Overview

● Modeled after KLSum algorithm
● Goal: Minimize KL Divergence/maximize 

cosine similarity between summary and 
original documents

● Testing every possible summary is O(2n), so 
we used a greedy algorithm



● Start with an empty summary M
● Select the sentence S that has not yet been 

selected that maximizes the similarity 
between M + S and the whole document 
collection

● Repeat until no more sentences can be 
added without violating the length limit

Algorithm Details



Vector Weighting 
Strategies



Creating vectors: Raw Counts

Each element of the vector corresponds to the 
unigram count of the document/sentence as 
lemmatized by Stanford CoreNLP.



Creating vectors: TF-IDF

Weight raw counts using a variant of TF-IDF:

(nv/Nv)log(Nc/nc)

● nv: raw count of the unigram in the vector
● Nv: total count of all unigrams in the vector
● nc: raw count of the unigram in the 

background corpus (Annotated Gigaword)
● Nc: total count of all unigrams in the 

background corpus



Creating vectors: Log-likelihood 
ratio

● Weight raw counts using log-likelihood ratio
● We used Annotated Gigaword corpus as the 

background corpus



Creating vectors: Normalized log-
likelihood ratio

● Weight the vector for the whole document 
collection using log-likelihood

● Weight each item in individual sentences as 
wb(ws/ns)
○ wb: weight of the item in the background corpus
○ ws: raw unigram count in sentence vector
○ ns: total of all unigram counts in the sentence vector

● Intended to correct preference for shorter 
sentences



Filtering stop words

● 85 lemmas
● Manually compiled from the most common 

lemmas in the Gigaword corpus
● Stop words ignored when creating all vectors



Results



Results: Stop words filtered out

Comparison Weighting ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

KL divergence raw counts 0.28206 0.07495 0.02338 0.00777

KL divergence TF-IDF 0.28401 0.07636 0.02440 0.00798

KL divergence LL 0.29039 0.08304 0.02889 0.00984

KL divergence LL (normalized) 0.27824 0.07306 0.02268 0.00746

cosine similarity raw counts 0.28232 0.07336 0.02114 0.00686

cosine similarity TF-IDF 0.28602 0.07571 0.02305 0.00758

cosine similarity LL 0.26698 0.06646 0.01976 0.00632

cosine similarity LL (normalized) 0.27016 0.06603 0.01946 0.00604



Results: Stop words not filtered out

Comparison Weighting ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4

KL divergence raw counts 0.24185 0.06338 0.02266 0.00778

KL divergence TF-IDF 0.25736 0.06790 0.02301 0.00814

KL divergence LL 0.28682 0.08110 0.02716 0.00875

KL divergence LL (normalized) 0.27813 0.07283 0.02248 0.00718

cosine similarity raw counts 0.18632 0.04202 0.01345 0.00450

cosine similarity TF-IDF 0.24422 0.05887 0.01918 0.00612

cosine similarity LL 0.26686 0.06694 0.02031 0.00655

cosine similarity LL (normalized) 0.26842 0.06525 0.01929 0.00604



Discussion



Issues

● We need to remove the dateline (e.g. 
SEATTLE (AP)) as a preprocessing step

● There is too much redundancy in some of 
the summaries (no explicit method to handle 
redundancy in our approach yet)

● The last sentence is often very short and not 
useful



Potential Improvements

● Expand the search space a little
● Replace pronouns with their referents as a 

preprocessing step
● Take advantage of similarities, particularly 

synonyms, between different words using 
WordNet or word embeddings for better 
comparison of vectors



Baseline summarization 
system
Veljko Miljanic –Abdelrahman Baligh - Ahmed Aly
4/28/2015



Introduction
- End to end document summarization system
- We have approached extractive summarization as sentence ranking problem
- We want to build ML sentence ranker that can combine variety of  features
- Baseline rankers

lead 
log likelihood

- Content ordering (placeholder): output sentences in order of their rank
- Text realization (placeholder): concatenate top sentences 



System architecture

Document
Sentence 
Tokenizer

Ranker
Content 
Ordering

Realization Summary

Content 
Summarizer AQUAINT and AQUAINT2 corporas



System architecture (cont.)
Sentence tokenizer:
We are using NLTK sentence tokenizer to split documents into sentences. 

Ranker:
- We plan on building ML ranker to be able to combine variety of features:

log likelihood ratio, position of sentence in document, …

- Pointwise ranker: regression target will be sentence ROUGE score

- Pairwise ranker: classifier target generated based on sentence order by their ROUGE scor



System architecture (cont.)
Log Likelihood Ratio Baseline:

-We’ve used log likelihood scores to serve as our baseline ranking scheme

- Sentences are ranked by LLR weights and we pick up top N that fit into the summary size

- Background corpora is union of the entire AQUAINT and AQUAINT2 corpora

- All words converted to lowercase prior to computing LLR

- LLR threshold is tuned on devtest set (14)



System architecture (cont.)
Ranker(LLR): Threshold Tuning

THR ROUGE 1 ROUGE-2 ROUGE-3 ROUGE-4

1 0.15062 0.03245 0.00777 0.0021

2 0.15266 0.03078 0.00683 0.00118

3 0.15039 0.03333 0.0073 0.00137

4 0.15801 0.0337 0.00803 0.00264

5 0.1656 0.03601 0.01001 0.00309

6 0.16077 0.03532 0.01034 0.00349

7 0.16723 0.03935 0.01202 0.00438

8 0.17387 0.04192 0.01286 0.00439

9 0.17721 0.04323 0.01394 0.00557

10 0.17407 0.03833 0.01188 0.0043

11 0.18244 0.04457 0.01581 0.00732

12 0.16909 0.03716 0.01135 0.0037

13 0.1706 0.04029 0.01408 0.00531

14 0.19069 0.0478 0.01825 0.0078

15 0.17903 0.04466 0.01626 0.00674

16 0.18541 0.04679 0.01579 0.00628

17 0.18557 0.04663 0.01559 0.00609

18 0.18899 0.04771 0.01611 0.00643

19 0.18584 0.04675 0.01624 0.00654

20 0.18794 0.04887 0.01871 0.00905



System architecture (cont.)
Ranker (SVR):
- We started our experiments by trying to train a support vector machine regresser to estimate 

the ROUGE scores of sentences and sort them accordingly. 
- We are using scikit-learn as our ML toolkit. 

SVR Ranker

List of sentences Feature Extraction Support vector regresser

Training data
Model 

parameters

ROUGE Score per 
sentence

Sorted List of sentences



System architecture (cont.)
Ranker (SVR):
- We are still working on this ranker as we are having some issues with the convergence of the 

regression algorithm. 

- Another approach that we are still working on is to train a supervised classifier to pairwise 
compare sentences and produce a sorted list of sentences according to their importance. 

- For the next deliverable we will be working on extending our features and try different 
regression algorithms



System architecture (cont.)
Information ordering:
-For now, sentences are ordered in a descending order according to their ranker scores

Content Realization:
-We just join the top sentences with a new line separator in between them. 



Results

Lead sentences baseline information (just taking the first n sentences from the first document 
in the docset)
1 ROUGE-1 Average_R: 0.18369 (95%-conf.int. 0.15940 - 0.20823)
1 ROUGE-2 Average_R: 0.05075 (95%-conf.int. 0.04034 - 0.06183)
1 ROUGE-3 Average_R: 0.01859 (95%-conf.int. 0.01317 - 0.02523)
1 ROUGE-4 Average_R: 0.00666 (95%-conf.int. 0.00371 - 0.01036)

LLR ranker results
1 ROUGE-1 Average_R: 0.19069 (95%-conf.int. 0.16378 - 0.21615)
1 ROUGE-2 Average_R: 0.04780 (95%-conf.int. 0.03693 - 0.05908)
1 ROUGE-3 Average_R: 0.01825 (95%-conf.int. 0.01261 - 0.02485)
1 ROUGE-4 Average_R: 0.00780 (95%-conf.int. 0.00356 - 0.01324)

http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/
http://conf.int/


Issues

-Most of the work went on reading AQUAINT and AQUAINT-2 corpora because data is 
inconsistent and also format between corpora is different. AQUAINT can't be read with XML 
parser while AQUAINT-2 could

-The SVR regresser didn’t converge, that is mainly because we haven’t yet extracted enough 
features. (We will be working on this one for the next deliverable)

-We haven’t yet implemented filtering for text that usually isn’t part of summary (e.g. citations)

-For most of the summaries we are seeing duplicate sentences. We are still working on a module 
that would prevent similar sentences to show up in the summary
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