
Entity- & Topic-Based
Information Ordering

Ling 573
Systems and Applications

May 7, 2015

Roadmap
�  Entity-based cohesion model:

�  Model entity based transitions

�  Topic-based cohesion model:
�  Models sequence of topic transitions

�  Ordering as optimization

Entity Grid
�  Need compact representation of:

�  Mentions, grammatical roles, transitions
�  Across sentences

�  Entity grid model:
�  Rows: sentences
�  Columns: entities
�  Values: grammatical role of mention in sentence

�  Roles: (S)ubject, (O)bject, X (other), __ (no mention)

�  Multiple mentions: ? Take highest

Grids à Features
�  Intuitions:

�  Some columns dense: focus of text (e.g. MS)
�  Likely to take certain roles: e.g. S, O

�  Others sparse: likely other roles (x)
�  Local transitions reflect structure, topic shifts

Grids à Features
�  Intuitions:

�  Some columns dense: focus of text (e.g. MS)
�  Likely to take certain roles: e.g. S, O

�  Others sparse: likely other roles (x)
�  Local transitions reflect structure, topic shifts

�  Local entity transitions: {s,o,x,_}n

�  Continuous column subsequences (role n-grams?)

�  Compute probability of sequence over grid:
�  # occurrences of that type/# of occurrences of that len

Vector Representation
�  Document vector:

�  Length

Vector Representation
�  Document vector:

�  Length: # of transition types

�  Values:

Vector Representation
�  Document vector:

�  Length: # of transition types

�  Values: Probabilities of each transition type

�  Can vary by transition types:
�  E.g. most frequent; all transitions of some length, etc

Dependencies &
Comparisons

�  Tools needed:

Dependencies &
Comparisons

�  Tools needed:
�  Coreference: Link mentions

�  Full automatic coref system vs

Dependencies &
Comparisons

�  Tools needed:
�  Coreference: Link mentions

�  Full automatic coref system vs

�  Noun clusters based on lexical match

�  Grammatical role:
�  Extraction based on dependency parse (+passive rule) vs

Dependencies &
Comparisons

�  Tools needed:
�  Coreference: Link mentions

�  Full automatic coref system vs

�  Noun clusters based on lexical match

�  Grammatical role:
�  Extraction based on dependency parse (+passive rule) vs

�  Simple present vs absent (X, _)

Dependencies &
Comparisons

�  Tools needed:
�  Coreference: Link mentions

�  Full automatic coref system vs
�  Noun clusters based on lexical match

�  Grammatical role:
�  Extraction based on dependency parse (+passive rule) vs
�  Simple present vs absent (X, _)

�  Salience:
�  Distinguish focused vs not:? By frequency
�  Build different transition models by saliency group

Experiments & Analysis
�  Trained SVM:

�  Salient: >= 2 occurrences; Transition length: 2

�  Train/Test: Is higher manual score set higher by system?

�  Feature comparison: DUC summaries

Discussion
�  Best results:

�  Use richer syntax and salience models
�  But NOT coreference (though not significant)

�  Why

Discussion
�  Best results:

�  Use richer syntax and salience models
�  But NOT coreference (though not significant)

�  Why? Automatic summaries in training, unreliable coref

�  Worst results:
�  Significantly worse with both simple syntax, no salience

�  Extracted sentences still parse reliably

�  Still not horrible: 74% vs 84%

Discussion
�  Best results:

�  Use richer syntax and salience models
�  But NOT coreference (though not significant)

�  Why? Automatic summaries in training, unreliable coref

�  Worst results:
�  Significantly worse with both simple syntax, no salience

�  Extracted sentences still parse reliably

�  Still not horrible: 74% vs 84%
�  Much better than LSA model (52.5%)

�  Learning curve shows 80-100 pairs good enough

State-of-the-Art
Comparisons

�  Two comparison systems:

�  Latent Semantic Analysis (LSA)

�  Barzilay & Lee (2004)

Comparison I
�  LSA model:

�  Motivation: Lexical gaps

Comparison
�  LSA model:

�  Motivation: Lexical gaps
�  Pure surface word match misses similarity

Comparison
�  LSA model:

�  Motivation: Lexical gaps
�  Pure surface word match misses similarity

�  Discover underlying concept representation
�  Based on distributional patterns

Comparison
�  LSA model:

�  Motivation: Lexical gaps
�  Pure surface word match misses similarity

�  Discover underlying concept representation
�  Based on distributional patterns

�  Create term x document matrix over large news corpus

Comparison
�  LSA model:

�  Motivation: Lexical gaps
�  Pure surface word match misses similarity

�  Discover underlying concept representation
�  Based on distributional patterns

�  Create term x document matrix over large news corpus
�  Perform SVD to create 100-dimensional dense matrix

Comparison
�  LSA model:

�  Motivation: Lexical gaps
�  Pure surface word match misses similarity
�  Discover underlying concept representation

�  Based on distributional patterns

�  Create term x document matrix over large news corpus
�  Perform SVD to create 100-dimensional dense matrix

�  Score summary as:
�  Sentence represented as mean of its word vectors
�  Average of cosine similarity scores of adjacent sents

�  Local “concept” similarity score

“Catching the Drift”
�  Barzilay and Lee, 2004 (NAACL best paper)

�  Intuition:
�  Stories:

�  Composed of topics/subtopics

�  Unfold in systematic sequential way

�  Can represent ordering as sequence modeling over topics

“Catching the Drift”
�  Barzilay and Lee, 2004 (NAACL best paper)

�  Intuition:
�  Stories:

�  Composed of topics/subtopics

�  Unfold in systematic sequential way

�  Can represent ordering as sequence modeling over topics

�  Approach: HMM over topics

Strategy
�  Lightly supervised approach:

�  Learn topics in unsupervised way from data
�  Assign sentences to topics

Strategy
�  Lightly supervised approach:

�  Learn topics in unsupervised way from data
�  Assign sentences to topics

�  Learn sequences from document structure
�  Given clusters, learn sequence model over them

Strategy
�  Lightly supervised approach:

�  Learn topics in unsupervised way from data
�  Assign sentences to topics

�  Learn sequences from document structure
�  Given clusters, learn sequence model over them

�  No explicit topic labeling, no hand-labeling of
sequence

Topic Induction
�  How can we induce a set of topics from doc set?

�  Assume we have multiple documents in a domain

Topic Induction
�  How can we induce a set of topics from doc set?

�  Assume we have multiple documents in a domain

�  Unsupervised approach:?

Topic Induction
�  How can we induce a set of topics from doc set?

�  Assume we have multiple documents in a domain

�  Unsupervised approach:? Clustering
�  Similarity measure?

Topic Induction
�  How can we induce a set of topics from doc set?

�  Assume we have multiple documents in a domain

�  Unsupervised approach:? Clustering
�  Similarity measure?

�  Cosine similarity over word bigrams

�  Assume some irrelevant/off-topic sentences
�  Merge clusters with few members into “etcetera” cluster

Topic Induction
�  How can we induce a set of topics from doc set?

�  Assume we have multiple documents in a domain

�  Unsupervised approach:? Clustering
�  Similarity measure?

�  Cosine similarity over word bigrams

�  Assume some irrelevant/off-topic sentences
�  Merge clusters with few members into “etcetera” cluster

�  Result: m topics, defined by clusters

Sequence Modeling
�  Hidden Markov Model

�  States

Sequence Modeling
�  Hidden Markov Model

�  States = Topics
�  State m: special insertion state

�  Transition probabilities:
�  Evidence for ordering?

Sequence Modeling
�  Hidden Markov Model

�  States = Topics
�  State m: special insertion state

�  Transition probabilities:
�  Evidence for ordering?

�  Document ordering

�  Sentence from topic a appears before sentence from topic b

Sequence Modeling
�  Hidden Markov Model

�  States = Topics
�  State m: special insertion state

�  Transition probabilities:
�  Evidence for ordering?

�  Document ordering

�  Sentence from topic a appears before sentence from topic b

p(sj | si) =
D(ci,cj)+δ2
D(ci)+δ2m

Sequence Modeling II
�  Emission probabilities:

�  Standard topic state:
�  Probability of observation given state (topic)

Sequence Modeling II
�  Emission probabilities:

�  Standard topic state:
�  Probability of observation given state (topic)

�  Probability of sentence under topic-specific bigram LM

�  Bigram probabilities

Sequence Modeling II
�  Emission probabilities:

�  Standard topic state:
�  Probability of observation given state (topic)

�  Probability of sentence under topic-specific bigram LM

�  Bigram probabilities

psi (w ' |w) =
fci (ww ')+δ1
fci (w)+ |V |

Sequence Modeling II
�  Emission probabilities:

�  Standard topic state:
�  Probability of observation given state (topic)

�  Probability of sentence under topic-specific bigram LM

�  Bigram probabilities

�  Etcetera state:
�  Forced complementary to other states

psi (w ' |w) =
fci (ww ')+δ1
fci (w)+ |V |

psm =
1−maxi:i<m psi (w ' |w)
(1−maxi:i<m psi (u |w))u∈V∑

Sequence Modeling III
�  Viterbi re-estimation:

�  Intuition: Refine clusters, etc based on sequence info

Sequence Modeling III
�  Viterbi re-estimation:

�  Intuition: Refine clusters, etc based on sequence info

�  Iterate:
�  Run Viterbi decoding over original documents

�  Assign each sentence to cluster most likely to generate it

�  Use new clustering to recompute transition/emission

Sequence Modeling III
�  Viterbi re-estimation:

�  Intuition: Refine clusters, etc based on sequence info

�  Iterate:
�  Run Viterbi decoding over original documents

�  Assign each sentence to cluster most likely to generate it

�  Use new clustering to recompute transition/emission

�  Until stable (or fixed iterations)

Sentence Ordering
Comparison

�  Restricted domain text:
�  Separate collections of earthquake, aviation accidents

�  LSA predictions:

Sentence Ordering
Comparison

�  Restricted domain text:
�  Separate collections of earthquake, aviation accidents

�  LSA predictions: which order has higher score
�  Topic/content model:

Sentence Ordering
Comparison

�  Restricted domain text:
�  Separate collections of earthquake, aviation accidents

�  LSA predictions: which order has higher score
�  Topic/content model: highest probability under HMM

Summary Coherence
Scoring Comparison

�  Domain independent:
�  Too little data per domain to estimate topic-content model

�  Train: 144 pairwise summary rankings

�  Test: 80 pairwise summary rankings

Summary Coherence
Scoring Comparison

�  Domain independent:
�  Too little data per domain to estimate topic-content model

�  Train: 144 pairwise summary rankings

�  Test: 80 pairwise summary rankings

�  Entity grid model (best): 83.8%

�  LSA model: 52.5%

�  Likely issue:

Summary Coherence
Scoring Comparison

�  Domain independent:
�  Too little data per domain to estimate topic-content model

�  Train: 144 pairwise summary rankings
�  Test: 80 pairwise summary rankings

�  Entity grid model (best): 83.8%

�  LSA model: 52.5%

�  Likely issue:
�  Bad auto summaries highly repetitive è

Summary Coherence
Scoring Comparison

�  Domain independent:
�  Too little data per domain to estimate topic-content model

�  Train: 144 pairwise summary rankings
�  Test: 80 pairwise summary rankings

�  Entity grid model (best): 83.8%

�  LSA model: 52.5%

�  Likely issue:
�  Bad auto summaries highly repetitive è

�  High inter-sentence similarity

Ordering as Optimization
�  Given a set of sentences to order

�  Define a local pairwise coherence score b/t sentences

�  Compute a total order optimizing local distances

�  Can we do this efficiently?

Ordering as Optimization
�  Given a set of sentences to order

�  Define a local pairwise coherence score b/t sentences

�  Compute a total order optimizing local distances

�  Can we do this efficiently?
�  Optimal ordering of this type is equivalent to TSP

�  Traveling Salesperson Problem: Given a list of cities and
distances between cities, find the shortest route that visits
each city exactly once and returns to the origin city.

Ordering as Optimization
�  Given a set of sentences to order

�  Define a local pairwise coherence score b/t sentences

�  Compute a total order optimizing local distances

�  Can we do this efficiently?
�  Optimal ordering of this type is equivalent to TSP

�  Traveling Salesperson Problem: Given a list of cities and
distances between cities, find the shortest route that visits
each city exactly once and returns to the origin city.

�  TSP is NP-complete (NP-hard)

Ordering as TSP
�  Can we do this practically?

�  Summaries are 100 words, so 6-10 sentences
�  10 sentences have how many possible orders

Ordering as TSP
�  Can we do this practically?

�  Summaries are 100 words, so 6-10 sentences
�  10 sentences have how many possible orders? O(n!)

�  Not impossible

�  Alternatively,

Ordering as TSP
�  Can we do this practically?

�  Summaries are 100 words, so 6-10 sentences
�  10 sentences have how many possible orders? O(n!)

�  Not impossible

�  Alternatively,
�  Use an approximation methods

�  Take the best of a sample

CLASSY 2006
�  Formulates ordering as TSP

�  Requires pairwise sentence distance measure

CLASSY 2006
�  Formulates ordering as TSP

�  Requires pairwise sentence distance measure

�  Term-based similarity: # of overlapping terms

CLASSY 2006
�  Formulates ordering as TSP

�  Requires pairwise sentence distance measure

�  Term-based similarity: # of overlapping terms

�  Document similarity:
�  Multiply by a weight if in the same document (there, 1.6)

CLASSY 2006
�  Formulates ordering as TSP

�  Requires pairwise sentence distance measure

�  Term-based similarity: # of overlapping terms

�  Document similarity:
�  Multiply by a weight if in the same document (there, 1.6)

�  Normalize to between 0 and 1 (sqrt of product of selfsim)
�  Make distance: subtract from 1

Practicalities of Ordering
�  Brute force: O(n!)

Practicalities of Ordering
�  Brute force: O(n!)

�  “there are only 3,628,800 ways to order 10 sentences plus
a lead sentence, so exhaustive search is feasible.“ (Conroy)

Practicalities of Ordering
�  Brute force: O(n!)

�  “there are only 3,628,800 ways to order 10 sentences plus
a lead sentence, so exhaustive search is feasible.“ (Conroy)

�  Still,..
�  Used sample set to pick best

�  Candidates:
�  Random

�  Single-swap changes from good candidates

Practicalities of Ordering
�  Brute force: O(n!)

�  “there are only 3,628,800 ways to order 10 sentences plus
a lead sentence, so exhaustive search is feasible.“ (Conroy)

�  Still,..
�  Used sample set to pick best

�  Candidates:
�  Random

�  Single-swap changes from good candidates

�  50K enough to consistently generate minimum cost order

Conclusions
�  Many cues to ordering:

�  Temporal, coherence, cohesion
�  Chronology, topic structure, entity transitions, similarity

�  Strategies:
�  Heuristic, machine learned; supervised, unsupervised

�  Incremental build-up versus generate & rank

�  Issues:
�  Domain independence, semantic similarity, reference

