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Roadmap  
�  Entity-based cohesion model: 

�  Model entity based transitions 

�  Topic-based cohesion model: 
�  Models sequence of  topic transitions 

�  Ordering as optimization 



Entity Grid 
�  Need compact representation of: 

�   Mentions, grammatical roles, transitions 
�  Across sentences 

�  Entity grid model: 
�  Rows:  sentences 
�  Columns: entities 
�  Values: grammatical role of  mention in sentence 

�  Roles: (S)ubject, (O)bject, X (other), __ (no mention) 

�  Multiple mentions: ? Take highest 





Grids à Features 
�  Intuitions: 

�  Some columns dense: focus of  text (e.g. MS) 
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�  Intuitions: 

�  Some columns dense: focus of  text (e.g. MS) 
�  Likely to take certain roles: e.g. S, O 

�  Others sparse: likely other roles (x) 
�  Local transitions reflect structure, topic shifts 

�  Local entity transitions: {s,o,x,_}n 

�  Continuous column subsequences (role n-grams?) 

�  Compute probability of  sequence over grid: 
�  # occurrences of  that type/# of  occurrences of  that len 
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Vector Representation 
�  Document vector: 

�  Length: # of  transition types 

�  Values: Probabilities of  each transition type 

�  Can vary by transition types: 
�  E.g. most frequent; all transitions of  some length, etc 
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Dependencies & 
Comparisons 

�  Tools needed: 
�  Coreference:  Link mentions 

�  Full automatic coref  system vs 
�  Noun clusters based on lexical match 

�  Grammatical role:  
�  Extraction based on dependency parse (+passive rule) vs 
�  Simple present vs absent (X, _) 

�  Salience: 
�  Distinguish focused vs not:? By frequency 
�  Build different transition models by saliency group  



Experiments & Analysis 
�  Trained SVM:  

�  Salient: >= 2 occurrences; Transition length: 2 

�  Train/Test: Is higher manual score set higher by system? 

�  Feature comparison:  DUC summaries 
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Discussion 
�  Best results: 

�  Use richer syntax and salience models 
�  But NOT coreference (though not significant) 

�  Why?  Automatic summaries in training, unreliable coref  

�  Worst results: 
�  Significantly worse with both simple syntax, no salience 

�  Extracted sentences still parse reliably 

�  Still not horrible: 74% vs 84% 
�  Much better than LSA model (52.5%) 

�  Learning curve shows 80-100 pairs good enough 



State-of-the-Art 
Comparisons 

�  Two comparison systems: 

�  Latent Semantic Analysis (LSA) 

�  Barzilay & Lee (2004) 
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Comparison 
�  LSA model: 

�  Motivation: Lexical gaps 
�  Pure surface word match misses similarity 
�  Discover underlying concept representation 

�  Based on distributional patterns 

�  Create term x document matrix over large news corpus 
�  Perform SVD to create 100-dimensional dense matrix 

�  Score summary as: 
�  Sentence represented as mean of  its word vectors 
�  Average of  cosine similarity scores of  adjacent sents 

�  Local “concept” similarity score 
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“Catching the Drift” 
�  Barzilay and Lee, 2004 (NAACL best paper) 

�  Intuition: 
�  Stories: 

�  Composed of  topics/subtopics 

�  Unfold in systematic sequential way 

�  Can represent ordering as sequence modeling over topics 

�  Approach: HMM over topics 
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Strategy 
�  Lightly supervised approach: 

�  Learn topics in unsupervised way from data 
�  Assign sentences to topics 

�  Learn sequences from document structure 
�  Given clusters, learn sequence model over them 

�  No explicit topic labeling, no hand-labeling of  
sequence 
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Topic Induction 
�  How can we induce a set of  topics from doc set? 

�  Assume we have multiple documents in a domain 

�  Unsupervised approach:? Clustering 
�  Similarity measure? 

�  Cosine similarity over word bigrams 

�  Assume some irrelevant/off-topic sentences 
�  Merge clusters with few members into “etcetera” cluster 

�  Result: m topics, defined by clusters 
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Sequence Modeling 
�  Hidden Markov Model 

�  States = Topics 
�  State m: special insertion state 

�  Transition probabilities: 
�  Evidence for ordering?  

�  Document ordering 

�  Sentence from topic a appears before sentence from topic b 

p(sj | si ) =
D(ci,cj )+δ2
D(ci )+δ2m
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Sequence Modeling II 
�  Emission probabilities: 

�  Standard topic state: 
�  Probability of  observation given state (topic) 

�  Probability of  sentence under topic-specific bigram LM 

�  Bigram probabilities 

 

�  Etcetera state: 
�  Forced complementary to other states 

psi (w ' |w) =
fci (ww ')+δ1
fci (w)+ |V |

psm =
1−maxi:i<m psi (w ' |w)
(1−maxi:i<m psi (u |w))u∈V∑
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Sequence Modeling III 
�  Viterbi re-estimation: 

�  Intuition: Refine clusters, etc based on sequence info 

�  Iterate: 
�  Run Viterbi decoding over original documents 

�  Assign each sentence to cluster most likely to generate it 

�  Use new clustering to recompute transition/emission  

�  Until stable (or fixed iterations) 
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Sentence Ordering  
Comparison 

�  Restricted domain text:  
�  Separate collections of  earthquake, aviation accidents 

�  LSA predictions: which order has higher score 
�  Topic/content model: highest probability under HMM 
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Summary Coherence 
Scoring Comparison 

�  Domain independent: 
�  Too little data per domain to estimate topic-content model 

�  Train: 144 pairwise summary rankings 
�  Test: 80 pairwise summary rankings 

�  Entity grid model (best):  83.8% 

�  LSA model: 52.5% 

�  Likely issue: 
�  Bad auto summaries highly repetitive è  

�  High inter-sentence similarity 



Ordering as Optimization 
�  Given a set of  sentences to order 

�  Define a local pairwise coherence score b/t sentences 

�  Compute a total order optimizing local distances 

�  Can we do this efficiently? 

 



Ordering as Optimization 
�  Given a set of  sentences to order 

�  Define a local pairwise coherence score b/t sentences 

�  Compute a total order optimizing local distances 

�  Can we do this efficiently? 
�  Optimal ordering of  this type is equivalent to TSP 

�  Traveling Salesperson Problem:  Given a list of  cities and 
distances between cities, find the shortest route that visits 
each city exactly once and returns to the origin city. 

 



Ordering as Optimization 
�  Given a set of  sentences to order 

�  Define a local pairwise coherence score b/t sentences 

�  Compute a total order optimizing local distances 

�  Can we do this efficiently? 
�  Optimal ordering of  this type is equivalent to TSP 

�  Traveling Salesperson Problem:  Given a list of  cities and 
distances between cities, find the shortest route that visits 
each city exactly once and returns to the origin city. 

�  TSP is NP-complete  (NP-hard) 
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Ordering as TSP 
�  Can we do this practically? 

�  Summaries are 100 words, so 6-10 sentences 
�  10 sentences have how many possible orders? O(n!) 

�  Not impossible 

�  Alternatively, 
�  Use an approximation methods 

�  Take the best of  a sample 
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CLASSY 2006 
�  Formulates ordering as TSP 

�  Requires pairwise sentence distance measure 

�  Term-based similarity: # of  overlapping terms 

�  Document similarity:  
�  Multiply by a weight if  in the same document (there, 1.6) 

�  Normalize to between 0 and 1 (sqrt of  product of  selfsim) 
�  Make distance: subtract from 1 
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Practicalities of  Ordering 
�  Brute force: O(n!) 

�  “there are only 3,628,800 ways to order 10 sentences plus 
a lead sentence, so exhaustive search is feasible.“ (Conroy) 

�  Still,.. 
�  Used sample set to pick best 

�  Candidates: 
�  Random 

�  Single-swap changes from good candidates  

�  50K enough to consistently generate minimum cost order 



Conclusions 
�  Many cues to ordering: 

�  Temporal, coherence, cohesion 
�  Chronology, topic structure, entity transitions, similarity 

�  Strategies: 
�  Heuristic, machine learned; supervised, unsupervised 

�  Incremental build-up versus generate & rank 

�  Issues: 
�  Domain independence, semantic similarity, reference 


