Content Realization

Ling573 Systems and Applications May 12, 2015

Roadmap

- Content realization
 - Goals
 - Broad approaches
 - Implementation exemplars

Goals of Content Realization

- Abstractive summaries:
 - Content selection works over concepts
 - Need to produce important concepts in fluent NL
- Extractive summaries:
 - Already working with NL sentences
 - Extreme compression: e.g 60 byte summaries: headlines
 - Increase information:
 - Remove verbose, unnecessary content
 - More space left for new information
 - Increase readability, fluency
 - Present content from multiple docs, non-adjacent sents
 - Improve content scoring
 - Remove distractors, boost scores: i.e. % signature terms in doc

Broad Approaches

- Abstractive summaries:
 - Complex Q-A: template-based methods
 - More generally: full NLG: concept-to-text
- Extractive summaries:
 - Sentence compression:
 - Remove "unnecessary" phrases:
 - Information? Readability?
 - Sentence reformulation:
 - Reference handling
 - Information? Readability?
 - Sentence fusion: Merge content from multiple sents

Sentence Compression

- Main strategies:
 - Heuristic approaches
 - Deep vs Shallow processing
 - Information- vs readability- oriented
 - Machine-learning approaches
 - Sequence models
 - HMM, CRF
 - Deep vs Shallow information
 - Integration with selection
 - Pre/post-processing; Candidate selection: heuristic/learned

Form	CLASSY	ISCI	UMd	SumBasic+	Cornell
Initial Adverbials	Y	Μ	Y	Y	Y
Initial Conj	Y		Y	Y	
Gerund Phr.	Y	Μ	Μ	Y	Μ
Rel clause appos	Y		Μ	Y	Y
Other adv	Y		Ν		
Numeric: ages,	Y		Ν		
Junk (byline, edit)	Y		Ν		Y
Attributives	Y	Y		Y	Y
Manner modifiers	М	Y	М		Y
Temporal modifiers	Μ	Y	Y		Y
POS: det, that, MD			Y		
XP over XP			Y		
PPs (w/, w/o constraint)			Y		
Preposed Adjuncts			Y		
SBARs			Y		М
Conjuncts			Y		
Content in parentheses		Y			Y

Shallow, Heuristic

- CLASSY 2006
 - Pre-processing! Improved ROUGE
 - Previously used automatic POS tag patterns: error-prone
- Lexical & punctuation surface-form patterns
 - "function" word lists: Prep, conj, det; adv, gerund; punct
- Removes:
 - Junk: bylines, editorial
 - Sentence-initial adv, conj phrase (up to comma)
 - Sentence medial adv ("also"), ages
 - Gerund (-ing) phrases
 - Rel. clause attributives, attributions w/o quotes
- Conservative: < 3% error (vs 25% w/POS)

Deep, Minimal, Heuristic

• ICSI/UTD:

- Use an Integer Linear Programming approach to solve
- Trimming:
 - Goal: Readability (not info sqeezing)
 - Removes temporal expressions, manner modifiers, "said"
 - Why?: "next Thursday"
 - Methodology: Automatic SRL labeling over dependencies
 - SRL not perfect: How can we handle?
 - Restrict to high-confidence labels
 - Improved ROUGE on (some) training data

Example

A ban against bistros providing plastic bags free of charge will be lifted at the beginning of March.

Example

A ban against bistros providing plastic bags free of charge will be lifted at the beginning of March. A ban against bistros providing plastic bags free of charge will be lifted.

Deep, Extensive, Heuristic

- Both UMD & SumBasic+
 - Based on output of phrase structure parse
 - UMD: Originally designed for headline generation
 - Goal: Information squeezing, compress to add content
- Approach: (UMd)
 - Ordered cascade of increasingly aggressive rules
 - Subsumes many earlier compressions
 - Adds headline oriented rules (e.g. removing MD, DT)
 - Adds rules to drop large portions of structure
 - E.g. halves of AND/OR, wholescale SBAR/PP deletion

Integrating Compression & Selection

- Simplest strategy: (Classy, SumBasic+)
 - Deterministic, compressed sentence replaces original
- Multi-candidate approaches: (most others)
 - Generate sentences at multiple levels of compression
 - Possibly constrained by: compression ratio, minimum len
 - E.g. exclude: < 50% original, < 5 words (ICSI)
 - Add to original candidate sentences list
 - Select based on overall content selection procedure
 - Possibly include source sentence information
 - E.g. only include single candidate per original sentence

Multi-Candidate Selection

- (UMd, Zajic et al. 2007, etc)
- Sentences selected by tuned weighted sum of feats
 - Static:
 - Position of sentence in document
 - Relevance of sentence/document to query
 - Centrality of sentence/document to topic cluster
 - Computed as: IDF overlap or (average) Lucene similarity
 - # of compression rules applied
 - Dynamic:
 - Redundancy: $S = \prod_{wi \text{ in } S} \lambda P(w|D) + (1 \cdot \lambda)P(w|C)$
 - # of sentences already taken from same document
- Significantly better on ROUGE-1 than uncompressed
 - Grammaticality lousy (tuned on headlinese)

Learning Compression

- Cornell (Wang et al, 2013)
- Contrasted three main compression strategies
 - Rule-based
 - Sequence-based learning
 - Tree-based, learned models
- Resulting sentences selected by SVR model

Sequence-based Compression

- View as sequence labeling problem
 - Decision for each word in sentence: keep vs delete
 - Model: linear-chain CRF
 - Labels: B-retain, I-retain, O (token to be removed)
 - Features:
 - "Basic" features: word-based
 - Rule-based features: if fire, force to O
 - Dependency tree features: Relations, depth
 - Syntactic tree features: POS, labels, head, chunk
 - Semantic features: predicate, SRL
 - Include features for neighbors

Compression Corpus

- (Clark & Lapata, 2008)
- Manually created corpus:
 - Written: 82 newswire articles (BNC, ANT)
 - Spoken: 50 stories from HUB-5 broadcast news
- Annotators created compression sentence by sentence
 - Could mark as not compressable
- http://jamesclarke.net/research/resources/

Feature Set

• Detail:

Basic Features

first 1/3/5 tokens (toks)? last 1/3/5 toks? first letter/all letters capitalized? is negation? is stopword? Dependency Tree Features dependency relation (dep rel) parent/grandparent dep rel

is the root?

has a depth larger than 3/5?

Rule-Based Features

For each rule in Table 2, we construct a corresponding feature to indicate whether the token is identified by the rule.

Syntactic Tree Features

POS tag

parent/grandparent label leftmost child of parent? second leftmost child of parent? is headword? in NP/VP/ADVP/ADJP chunk?

Semantic Features

is a predicate? semantic role label

Tree-based Compression

- Given a phrase-structure parse tree,
 - Determine if each node is: removed, retained, or partial
- Issues:
 - *#* possible compressions exponential
 - Need some local way of scoring a node
 - Need some way of ensuring consistency
 - I.e. can't have retain over remove
 - Need to ensure grammaticality

Tree-based Compression

- Given a phrase-structure parse tree,
 - Determine if each node is: removed, retained, or partial
- Issues & Solutions:
 - *#* possible compressions exponential
 - Order parse tree nodes (here post-order)
 - Do beam search over candidate labelings
 - Need some local way of scoring a node
 - Use MaxEnt to compute probability of label
 - Need some way of ensuring consistency
 - Restrict candidate labels based on context
 - Need to ensure grammaticality
 - Rerank resulting sentences using n-gram LM

Features

- Basic features:
 - Analogous to those for sequence labeling
- Enhancements:
 - Context features: decisions about child, sibling nodes
 - Head-driven search:
 - Reorder so head nodes at each level checked first
 - Why? If head is dropped, shouldn't keep rest
 - Revise context features

Summarization Features

- (aka MULTI in paper)
- Calculated based on current decoded word sequence W
- Linear combination of:
 - Score under MaxEnt
 - Query relevance:
 - Proportion of overlapping words with query
 - Importance: Average sumbasic score over W
 - Language model probability
 - Redundancy: 1 --- proportion of words overlapping summ

Summarization Results

	DUC 2006			DUC 2007		
System	C Rate	R-2	R-SU4	C Rate	R-2	R-SU4
Best DUC system	-	9.56	15.53	-	12.62	17.90
Davis et al. (2012)	_	10.2	15.2	-	12.8	17.5
SVR	100%	7.78	13.02	100%	9.53	14.69
LambdaMART	100%	9.84	14.63	100%	12.34	15.62
Rule-based	78.99%	10.62 *†	15.73 †	78.11%	13.18	18.15
Sequence	76.34%	10.49 †	15.60 †	77.20%	13.25	18.23†
Tree (BASIC + Score Basic)	70.48%	10.49 †	15.86 †	69.27%	13.00†	18.29†
Tree (CONTEXT + $Score_{Basic}$)	65.21%	10.55 *†	16.10 †	63.44%	12.75	18.07†
Tree (HEAD + $Score_{Basic}$)	66.70%	10.66 *†	16.18 †	65.05%	12.93	18.15†
Tree (HEAD + MULTI)	70.20%	11.02 *†	16.25 †	73.40%	13.49†	18.46†

Compression Results

System	C Rate	Uni-Prec	Uni-Rec	Uni-F1	Rel-F1
HedgeTrimmer	57.64%	0.72	0.65	0.64	0.50
McDonald (2006)	70.95%	0.77	0.78	0.77	0.55
Martins and Smith (2009)	71.35%	0.77	0.78	0.77	0.56
Rule-based	87.65%	0.74	0.91	0.80	0.63
Sequence	70.79%	0.77	0.80	0.76	0.58
Tree (BASIC)	69.65%	0.77	0.79	0.75	0.56
Tree (CONTEXT)	67.01%	0.79	0.78	0.76	0.57
Tree (HEAD)	68.06%	0.79	0.80	0.77	0.59

Discussion

- Best system incorporates:
 - Tree structure
 - Machine learning
 - Summarization features
- Rule-based approach surprisingly competitive
 - Though less aggressive in terms of compression
- Learning based approaches enabled by sentence compression corpus

General Discussion

- Broad range of approaches:
 - Informed by similar linguistic constraints
 - Implemented in different ways:
 - Heuristic vs Learned
 - Surface patterns vs parse trees vs SRL
 - Even with linguistic constraints
 - Often negatively impact linguistic quality
 - Key issue: errors in linguistic analysis
 - POS taggers \rightarrow Parsers \rightarrow SRL, etc

General Discussion

- Compression has range of uses:
 - Removing irrelevant information for selection
 - Improving readability
 - Allowing inclusion of more information
- Slightly different strategies for each

