Alternative Summarization: Reviews & Speech

Ling 573 Systems and Applications May 28, 2015

Roadmap

- Review summarization:
 - Basic approach
 - Learning what users want
 - Speech summarization:
 - Application of speech summarization
 - Speech vs Text

Sentiment Summarization

- Classic approach: (Hu and Liu, 2004)
- Summarization of product reviews (e.g. Amazon)
 - Identify product features mentioned in reviews
 - Identify polarity of sentences about those features
 - For each product,
 - For each feature,
 - For each polarity: provide illustrative examples

Example Summary

- Feature: picture
 - Positive: 12
 - Overall this is a good camera with a really good picture clarity.
 - The pictures are absolutely amazing the camera captures the minutest of details.
 - After nearly 800 pictures I have found that this camera takes incredible pictures.
 - ..
- Negative: 2
 - The pictures come out hazy if your hands shake even for a moment during the entire process of taking a picture.
 - Focusing on a display rack about 20 feet away in a brightly lit room during day time, pictures produced by this camera were blurry and in a shade of orange.

Learning Sentiment Summarization

- Classic approach is heuristic:
 - May not scale, etc.

Learning Sentiment Summarization

- Classic approach is heuristic:
 - May not scale, etc.

• What do users want?

Learning Sentiment Summarization

- Classic approach is heuristic:
 - May not scale, etc.
- What do users want?
 - Which example sentences should be selected?
 - Strongest sentiment?
 - Most diverse sentiments?
 - Broadest feature coverage?

Review Summarization Factors

- Posed as optimizing score for given length summary
 - Using a sentence extractive strategy

Review Summarization Factors

- Posed as optimizing score for given length summary
 - Using a sentence extractive strategy
- Key factors:
 - Sentence sentiment score
 - Sentiment mismatch: b/t summary and product rating
 - Diversity:
 - Measure of how well diff't "aspects" of product covered
 - Related to both quality of coverage, importance of aspect

- Sentiment Match (SM): Neg(Mismatch)
 - Prefer summaries w/sentiment matching product
 - Issue?

- Sentiment Match (SM): Neg(Mismatch)
 - Prefer summaries w/sentiment matching product
 - Issue?
 - Neutral rating → neutral summary sentences
 - Approach: Force system to select stronger sents first

- Sentiment Match (SM): Neg(Mismatch)
 - Prefer summaries w/sentiment matching product
 - Issue?
 - Neutral rating → neutral summary sentences
 - Approach: Force system to select stronger sents first
- Sentiment Match + Aspect Coverage (SMAC):
 - Linear combination of:
 - Sentiment intensity, mismatch, & diversity

- Sentiment Match (SM): Neg(Mismatch)
 - Prefer summaries w/sentiment matching product
 - Issue?
 - Neutral rating → neutral summary sentences
 - Approach: Force system to select stronger sents first
- Sentiment Match + Aspect Coverage (SMAC):
 - Linear combination of:
 - Sentiment intensity, mismatch, & diversity
 - Issue?
 - Optimizes overall sentiment match, but not per-aspect

- Sentiment-Aspect Match (SAM):
 - Maximize coverage of aspects
 - *consistent* with per-aspect sentiment
 - Computed using probabilistic model
 - Minimize KL-divergence b/t summary, orig documents

Human Evaluation

- Pairwise preference tests for different summaries
 - Side-by-side, along with overall product rating
 - 1-4 symmetric preference
- Also collected comments that justify rating

Human Evaluation

- Pairwise preference tests for different summaries
 - Side-by-side, along with overall product rating
 - 1-4 symmetric preference
- Also collected comments that justify rating
- Usually some preference, but not significant
 - Except between SAM (better) and SMAC
 - And SMAC significantly better than LEAD baseline
 - (70% vs 25%)

• Preferred:

- Preferred:
 - Summaries with list (pro vs con)
- Disliked:

- Preferred:
 - Summaries with list (pro vs con)
- Disliked:
 - Summary sentences w/o sentiment
 - Non-specific sentences
 - Inconsistency b/t overall rating and summary

- Preferred:
 - Summaries with list (pro vs con)
- Disliked:
 - Summary sentences w/o sentiment
 - Non-specific sentences
 - Inconsistency b/t overall rating and summary
- Preferences differed depending on overall rating
 - Prefer SMAC for neutral vs SAM for extremes
 - (SAM excludes low polarity sentences)

- Ultimately, trained meta-classifier to pick model
 - Improved prediction of user preferences

- Ultimately, trained meta-classifier to pick model
 - Improved prediction of user preferences
- Similarities and contrasts w/TAC:
 - Similarities:

- Ultimately, trained meta-classifier to pick model
 - Improved prediction of user preferences
- Similarities and contrasts w/TAC:
 - Similarities:
 - Diversity ~ Non-redundancy
 - Product aspects ~ Topic aspects: coverage, importance
 - Differences:

- Ultimately, trained meta-classifier to pick model
 - Improved prediction of user preferences
- Similarities and contrasts w/TAC:
 - Similarities:
 - Diversity ~ Non-redundancy
 - Product aspects ~ Topic aspects: coverage, importance
 - Differences:
 - Strongly task/user oriented
 - Sentiment focused (overall, per-sentence)
 - Presentation preference: lists vs narratives

Speech Summarization

Speech Summary Applications

- Why summarize speech?
 - Meeting summarization
 - Lecture summarization
 - Voicemail summarization
 - Broadcast news
 - Debates, etc....

Speech and Text Summarization

- Commonalities:
 - Require key content selection
 - Linguistic cues: lexical, syntactic, discourse structure
 - Alternative strategies: extractive, abstractive

Speech vs Text

- Challenges of speech (summarization):
 - Recognition (and ASR errors)
 - Downstream NLP processing issues, errors
 - Segmentation: speaker, story, sentence
 - Channel issues (anchor vs remote)
 - Disfluencies
 - Overlaps
 - "Lower information density": off-talk, chitchat, etc
 - Generation: text? Speech? Resynthesis?
 - Other text cues: capitalization, paragraphs, etc
- New information: audio signal, prosody, dialog structure

Current Approaches

Predominantly extractive

• Significant focus on compression

- Why?
 - Fluency: raw speech is often messy
 - Speed: speech is (relatively) slow, if using playback
- Integration of speech features

Current Data

- Speech summary data:
 - Broadcast news
 - Lectures
 - Meetings
 - Talk shows
 - Conversations (Switchboard, Callhome)
 - Voicemail

Common Strategies

- Basically, do ASR and treat like text
 - Unsupervised approaches:
 - Tf-idf cosine; LSA; MMR
 - Classification-based approaches:
 - Features include:
 - Sentence position, sentence length, sentence score/weight
 - Discourse & local context features
 - Modeling approaches:
 - SVMs, logistic regression, CRFs, etc

What about "Speech"?

- Automatic sentence segmentation
- Disfluency tagging, filtering
- Speaker-related features:
 - Speaker role (e.g. anchor), proportion of speech
- ASR confidence scores:
 - Intuition: use more reliable content
- Prosody:
 - Pitch, intensity, speaking rate
 - Can indicate: emphasis, new topic, new information

Speech-focused Summarization

- Intuition:
 - How something is said is as important as what is said
- Hypothesis:
 - Speakers use pitch, intensity, speaking rate to mark important information
- Test:
 - Can we do speech summarization without speech transcription?
 - At least competitively with ASR

Approach

- Maskey & Hirschberg, 2005
- Data: Broadcast News (e.g. CNN)
 - Single-document summarization
- HMM model:
 - Summary vs non-summary states
- Observations:
 - Acoustic-prosodic measures: pitch, intensity,...
 - Speaker features: which speaker, role, etc
 - Lexical: word information
 - Discourse features

Results

- Acoustic, speaker results competitive w/lexical
 - Combined best

Features	ROUGE score
All features	0.8
Lexical	0.7
Acoustic+Speaker	0.68
Acoustic	0.63
Baseline	0.5

Summary

- Speech summarization:
 - Builds on text based models
- Extends to
 - Overcome speech-specific challenges
 - Exploit speech-specific cues
- Can be highly domain/task dependent
- Highly challenging