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Roadmap 
�  CLASSY: 

�  HMMs 

�  Matrix-based selection 
�  Linguistic processing 

�  Graph-based approaches 
�  Random walks 

�  Supervised selection 
�  Term ranking with rich features 



CLASSY 
�  “Clustering, Linguistics and Statistics for 

Summarization Yield” 
�  Conroy et al. 2000-2011 

�  Highlights: 
�  High performing system 

�  Often rank 1 in DUC/TAC, commonly used comparison 

�  Topic signature-type system (LLR) 
�  HMM-based content selection 
�  Redundancy handling 



Using LLR for Weighting 
�  Compute  weight for all cluster terms 

�  weight(wi) = 1 if  -2log λ> 10, 0 o.w. 

�  Use that to compute sentence weights 

�  How do we use the weights? 
�  One option: directly rank sentences for extraction 

�  LLR-based systems historically perform well 
�  Better than tf*idf  generally 



HMM Sentence Selection 
�  CLASSY strategy: Use LLR as feature in HMM  

�  How does HMM map to summarization? 
�  Key idea: 

�   Two classes of  states: summary, non-summary 
�  Feature(s)?: log(#sig+1) (tried: length, position,..) 

�  Lower cased, white-space tokenized (a-z), stopped 
�  Topology:  

�  Select sentences with highest posterior (in “summary”) 



Matrix-based Selection 
�  Redundancy minimizing selection 

�  Create term x sentence matrix 
�  If  term in sentence, weight is nonzero 

�  Loop: 
�  Select highest scoring sentence 

�  Based on Euclidean norm 

�  Subtract those components from remaining sentences 
�  Until enough sentences 

�  Effect: selects highly ranked but different sentences 
�  Relatively insensitive to weighting schemes 



Combining Approaches 
�  Both HMM and Matrix method select sentences 

�  Can combine to further improve 

�  Approach: 
�  Use HMM method to compute sentence scores 

�  (e.g. rather than just weight based) 
�  Incorporates context information, prior states 

�  Loop: 
�  Select highest scoring sentence 
�  Update matrix scores  

�  Exclude those with too low matrix scores 

�  Until enough sentences are found 



Other Linguistic Processing 
�  Sentence manipulation (before selection): 

�  Remove uninteresting phrases based on POS tagging 
�  Gerund clauses, restr. rel. appos, attrib, lead adverbs 

 

�  Coreference handling (Serif  system) 
�  Created coref  chains initially 
�  Replace all mentions with longest mention (# caps) 

�  Used only for sentence selection 



Outcomes 
�  HMM, Matrix: both effective, better combined 

�  Linguistic pre-processing improves 
�  Best ROUGE-1,ROUGE-2 in DUC 

�  Coref  handling improves: 
�  Best ROUGE-3, ROUGE-4; 2nd ROUGE-2 



Graph-Based Models 
�  LexRank  (Erkan & Radev, 2004) 

�  Key ideas: 
�  Graph-based model of  sentence saliency 

�  Draws ideas from PageRank, HITS, Hubs & Authorities 

�  Contrasts with straight term-weighting models 

�  Good performance: beats tf*idf  centroid 



Graph View 
�  Centroid approach: 

�  Central pseudo-document of  key words in cluster 

�  Graph-based approach: 
�  Sentences (or other units) in cluster link to each other 

�  Salient if  similar to many others 
�  More central or relevant to the cluster 

�  Low similarity with most others, not central 



Constructing a Graph   
�  Graph: 

�  Nodes: sentences 

�  Edges: measure of  similarity between sentences 

�  How do we compute similarity b/t nodes? 
�  Here: tf*idf  (could use other schemes) 

�  How do we compute overall sentence saliency? 
�  Degree centrality  
�  LexRank  



Example Graph 



Degree Centrality 
�  Centrality: # of  neighbors in graph 

�  Edge(a,b) if  cosine_sim(a,b) >= threshold 

�  Threshold = 0: 
�  Fully connected à uninformative 

�  Threshold = 0.1, 0.2: 
�  Some filtering, can be useful 

�  Threshold >= 0.3: 
�  Only two connected pairs in example 
�  Also uninformative 



LexRank 
�  Degree centrality: 1 edge, 1 vote 

�  Possibly problematic: 
�  E.g. erroneous doc in cluster, some sent. may score high 

�  LexRank idea: 
�  Node can have high(er) score via high scoring neighbors 

�  Same idea as PageRank, Hubs & Authorities 
�  Page ranked high b/c pointed to by high ranking pages  

�    

p(u) = p(v)
deg(v)v∈adj (u)

∑



Power Method 
�  Input: 

�  Adjacency matrix M 

�  Initialize p0 (uniform) 

�  t=0 

�  repeat 
�  t= t+1 
�  pt=MTpt-1 

�  Until convergence 

�  Return pt 



LexRank 
�  Can think of  matrix X as transition matrix of  Markov 

chain 
�  i.e. X(i,j) is probability of  transition from state i to j 

�  Will converge to a stationary distribution (r) 
�  Given certain properties (aperiodic, irreducible) 
�  Probability of  ending up in each state via random walk 

�  Can compute iteratively to convergence via: 

�  “Lexical PageRank” è “LexRank 
�  (power method computes eigenvector ) 

p(u) = d
N
+ (1− d) p(v)

deg(v)v∈adj (u)
∑



LexRank Score Example 
�  For earlier graph: 



Continuous LexRank 
�  Basic LexRank ignores similarity scores 

�  Except for initial thresholding of  adjacency 

�  Could just use weights directly (rather than degree) 

p(u) = d
N
+ (1− d) cossim(u,v)

cossim(z,v)
z∈adj (v)
∑v∈adj (u)

∑ p(v)



Advantages vs Centroid 
�  Captures information subsumption 

�  Highly ranked sentences have greatest overlap w/adj 

�  Will promote those sentences 

�  Reduces impact of  spurious high-IDF terms 
�  Rare terms get very high weight (reduce TF) 

�  Lead to selection of  sentences w/high IDF terms 
�  Effect minimized in LexRank 



Example Results 
�  Beat official DUC 2004 entrants: 

�  All versions beat baselines and centroid 
�  Continuous LR > LR > degree 

�  Variability across systems/tasks 

�  Common baseline and component 


