
Content Selection:
Classification & Graphs

Ling573
Systems & Applications

April 14, 2015

Roadmap
�  CLASSY:

�  HMMs

�  Matrix-based selection
�  Linguistic processing

�  Graph-based approaches
�  Random walks

�  Supervised selection
�  Term ranking with rich features

CLASSY
�  “Clustering, Linguistics and Statistics for

Summarization Yield”
�  Conroy et al. 2000-2011

�  Highlights:
�  High performing system

�  Often rank 1 in DUC/TAC, commonly used comparison

�  Topic signature-type system (LLR)
�  HMM-based content selection
�  Redundancy handling

Using LLR for Weighting
�  Compute weight for all cluster terms

�  weight(wi) = 1 if -2log λ> 10, 0 o.w.

�  Use that to compute sentence weights

�  How do we use the weights?
�  One option: directly rank sentences for extraction

�  LLR-based systems historically perform well
�  Better than tf*idf generally

HMM Sentence Selection
�  CLASSY strategy: Use LLR as feature in HMM

�  How does HMM map to summarization?
�  Key idea:

�  Two classes of states: summary, non-summary
�  Feature(s)?: log(#sig+1) (tried: length, position,..)

�  Lower cased, white-space tokenized (a-z), stopped
�  Topology:

�  Select sentences with highest posterior (in “summary”)

Matrix-based Selection
�  Redundancy minimizing selection

�  Create term x sentence matrix
�  If term in sentence, weight is nonzero

�  Loop:
�  Select highest scoring sentence

�  Based on Euclidean norm

�  Subtract those components from remaining sentences
�  Until enough sentences

�  Effect: selects highly ranked but different sentences
�  Relatively insensitive to weighting schemes

Combining Approaches
�  Both HMM and Matrix method select sentences

�  Can combine to further improve

�  Approach:
�  Use HMM method to compute sentence scores

�  (e.g. rather than just weight based)
�  Incorporates context information, prior states

�  Loop:
�  Select highest scoring sentence
�  Update matrix scores

�  Exclude those with too low matrix scores

�  Until enough sentences are found

Other Linguistic Processing
�  Sentence manipulation (before selection):

�  Remove uninteresting phrases based on POS tagging
�  Gerund clauses, restr. rel. appos, attrib, lead adverbs

�  Coreference handling (Serif system)
�  Created coref chains initially
�  Replace all mentions with longest mention (# caps)

�  Used only for sentence selection

Outcomes
�  HMM, Matrix: both effective, better combined

�  Linguistic pre-processing improves
�  Best ROUGE-1,ROUGE-2 in DUC

�  Coref handling improves:
�  Best ROUGE-3, ROUGE-4; 2nd ROUGE-2

Graph-Based Models
�  LexRank (Erkan & Radev, 2004)

�  Key ideas:
�  Graph-based model of sentence saliency

�  Draws ideas from PageRank, HITS, Hubs & Authorities

�  Contrasts with straight term-weighting models

�  Good performance: beats tf*idf centroid

Graph View
�  Centroid approach:

�  Central pseudo-document of key words in cluster

�  Graph-based approach:
�  Sentences (or other units) in cluster link to each other

�  Salient if similar to many others
�  More central or relevant to the cluster

�  Low similarity with most others, not central

Constructing a Graph
�  Graph:

�  Nodes: sentences

�  Edges: measure of similarity between sentences

�  How do we compute similarity b/t nodes?
�  Here: tf*idf (could use other schemes)

�  How do we compute overall sentence saliency?
�  Degree centrality
�  LexRank

Example Graph

Degree Centrality
�  Centrality: # of neighbors in graph

�  Edge(a,b) if cosine_sim(a,b) >= threshold

�  Threshold = 0:
�  Fully connected à uninformative

�  Threshold = 0.1, 0.2:
�  Some filtering, can be useful

�  Threshold >= 0.3:
�  Only two connected pairs in example
�  Also uninformative

LexRank
�  Degree centrality: 1 edge, 1 vote

�  Possibly problematic:
�  E.g. erroneous doc in cluster, some sent. may score high

�  LexRank idea:
�  Node can have high(er) score via high scoring neighbors

�  Same idea as PageRank, Hubs & Authorities
�  Page ranked high b/c pointed to by high ranking pages

� 

p(u) = p(v)
deg(v)v∈adj (u)

∑

Power Method
�  Input:

�  Adjacency matrix M

�  Initialize p0 (uniform)

�  t=0

�  repeat
�  t= t+1
�  pt=MTpt-1

�  Until convergence

�  Return pt

LexRank
�  Can think of matrix X as transition matrix of Markov

chain
�  i.e. X(i,j) is probability of transition from state i to j

�  Will converge to a stationary distribution (r)
�  Given certain properties (aperiodic, irreducible)
�  Probability of ending up in each state via random walk

�  Can compute iteratively to convergence via:

�  “Lexical PageRank” è “LexRank
�  (power method computes eigenvector)

p(u) = d
N
+ (1− d) p(v)

deg(v)v∈adj (u)
∑

LexRank Score Example
�  For earlier graph:

Continuous LexRank
�  Basic LexRank ignores similarity scores

�  Except for initial thresholding of adjacency

�  Could just use weights directly (rather than degree)

p(u) = d
N
+ (1− d) cossim(u,v)

cossim(z,v)
z∈adj (v)
∑v∈adj (u)

∑ p(v)

Advantages vs Centroid
�  Captures information subsumption

�  Highly ranked sentences have greatest overlap w/adj

�  Will promote those sentences

�  Reduces impact of spurious high-IDF terms
�  Rare terms get very high weight (reduce TF)

�  Lead to selection of sentences w/high IDF terms
�  Effect minimized in LexRank

Example Results
�  Beat official DUC 2004 entrants:

�  All versions beat baselines and centroid
�  Continuous LR > LR > degree

�  Variability across systems/tasks

�  Common baseline and component

