Content Selection: Supervision & Discourse

Ling573 Systems & Applications April 16, 2015

Roadmap

- Content selection
 - Supervised content selection
 - Analysis & Regression with rich features
 - Discourse structure
 - Models of discourse structure
 - Structure and relations for summarization

Supervised Word Selection

• RegSumm:

- Improving the Estimation of Word Importance for News Multi-Document Summarization (Hong & Nenkova, '14)
- Key ideas:
 - Supervised method for word selection
 - Diverse, rich feature set: unsupervised measures, POS, NER, position, etc
 - Identification of common "important" words via side corpus of news articles and human summaries

Basic Approach

- Learn keyword importance
 - Contrasts with unsupervised selection, learning sentences
 - Train regression over large number of possible features
 - Supervision over *words*
 - Did document word appear in summary or not?
 - Greedy sentence selection:
 - Highest scoring sentences: average word weight
 - Do not add if >= 0.5 cosine similarity w/any curr sents

Features I

- Unsupervised measures:
 - Used as binary features given some threshold
 - Word probability: count(w)/N
 - Computed over input cluster
 - Log likelihood ratio: Gigaword as background corpus
 - Markov Random Walk (MRW):
 - Graphical model approach similar to LexRank
 - Nodes: words
 - Edges: # syntactic dependencies b/t wds in sentences
 - Weights via PageRank algorithm

Features II

- "Global" word importance:
 - Question: Are there words which are intrinsically likely to show up in (news) summaries?
 - Approach:
 - Build language models on NYT corpus of articles+summs
 - One model on articles, one model on summaries
 - Measures: $Pr_A(w)$, $Pr_A(w)$ - $Pr_G(w)$, $Pr_A(w)/Pr_G(w)$
 - $KL(A||G) = Pr_A(w)*In (Pr_A(w)/Pr_G(w))$
 - $KL(G||A) = Pr_G(w)*In (Pr_G(w)/Pr_A(w))$
 - Binary features: top-k or bottom-k features

Features III

- Adaptations of common features:
 - Word position as proportion of document [0,1]
 - Earliest first, latest last, average, average first
 - Word type: POS, NER
 - Emphasizes NNS, NN, capitalization; ORG, PERS, LOC
 - MPQA and LIWC features:
 - MPQA: sentiment, subjectivity terms
 - Strong sentiment likely or not? NOT
 - LIWC: words for 64 categories: +: death, anger, money
 - Neg: pron, neg, fn words, swear, adverbs, etc

Assessment: Words

- Select N highest ranked keywords via regression
- Compute F-measure over words in summaries
 - G_i: i = # of summaries in which word appears

G_i	#words	PROB	LLR	MRW	REGBASIC	REGSUM
G_1	80	43.6	37.9	38.9	39.9	45.7
G_1	100	44.3	38.7	39.2	41.0	46.5
G_1	120	44.6	38.5	39.2	40.9	46.4
G_2	30	47.8	44.0	42.4	47.4	50.2
G_2	35	47.1	43.3	42.1	47.0	49.5
G_2	40	46.5	42.4	41.8	46.4	49.2

Assessment: Summaries

Compare summarization w/ROUGE-1,2,4

	System	R-1	R-2	R-4
	PROB	35.14	8.17	1.06
Basic	LLR	34.60	7.56	0.83
Systems	MRW	35.78	8.15	0.99
	REGBASIC	37.56	9.28	1.49
	KL	37.97	8.53	1.26
	PEER-65	37.62	8.96	1.51
State of The Art	SUBMOD	39.18	9.35	1.39
Systems	DPP	39.79	9.62	1.57
	REGSUM	38.57	9.75	1.60

Text Coherence

- Cohesion repetition, etc does not imply coherence
- Coherence relations:
 - Possible meaning relations between utts in discourse
 - Examples:
 - **Result:** Infer state of S₀ cause state in S₁
 - The Tin Woodman was caught in the rain. His joints rusted.
 - **Explanation**: Infer state in S₁ causes state in S₀
 - John hid Bill's car keys. He was drunk.
 - **Elaboration**: Infer same prop. from S_0 and S_1 .
 - Dorothy was from Kansas. She lived in the great Kansas prairie.
 - Pair of locally coherent clauses: discourse segment

Coherence Analysis

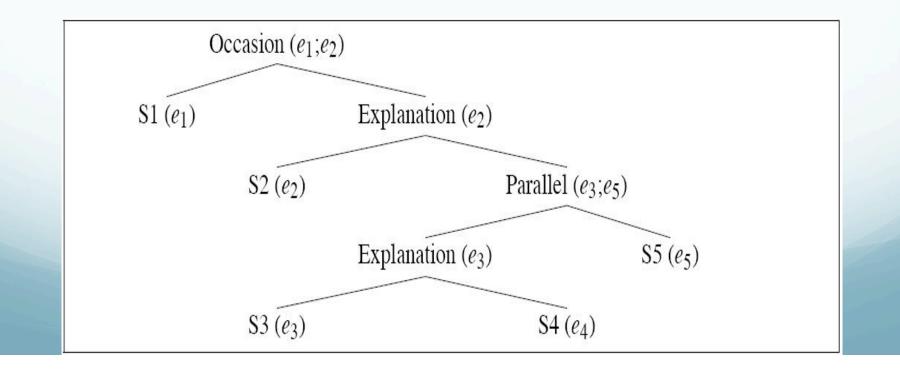
S1: John went to the bank to deposit his paycheck.

S2: He then took a train to Bill's car dealership.

S3: He needed to buy a car.

S4: The company he works now isn't near any public transportation.

S5: He also wanted to talk to Bill about their softball league.



Rhetorical Structure Theory

- Mann & Thompson (1987)
- Goal: Identify hierarchical structure of text
 - Cover wide range of TEXT types
 - Language contrasts
 - Relational propositions (intentions)
- Derives from functional relations b/t clauses

Components of RST

• Relations:

- Hold b/t two text spans, nucleus and satellite
 - Nucleus core element, satellite peripheral
 - Constraints on each, between
 - Units: Elementary discourse units (EDUs), e.g. clauses
- Schemas:
 - Grammar of legal relations between text spans
 - Define possible RST text structures
 - Most common: N + S, others involve two or more nuclei

• Structures:

 Using clause units, complete, connected, unique, adjacent

RST Relations

Core of RST

- RST analysis requires building tree of relations
- Circumstance, Solutionhood, Elaboration. Background, Enablement, Motivation, Evidence, Justify, Vol. Cause, Non-Vol. Cause, Vol. Result, Non-Vol. Result, Purpose, Antithesis, Concession, Condition, Otherwise, Interpretation, Evaluation, Restatement, Summary, Sequence, Contrast

• Captured in:

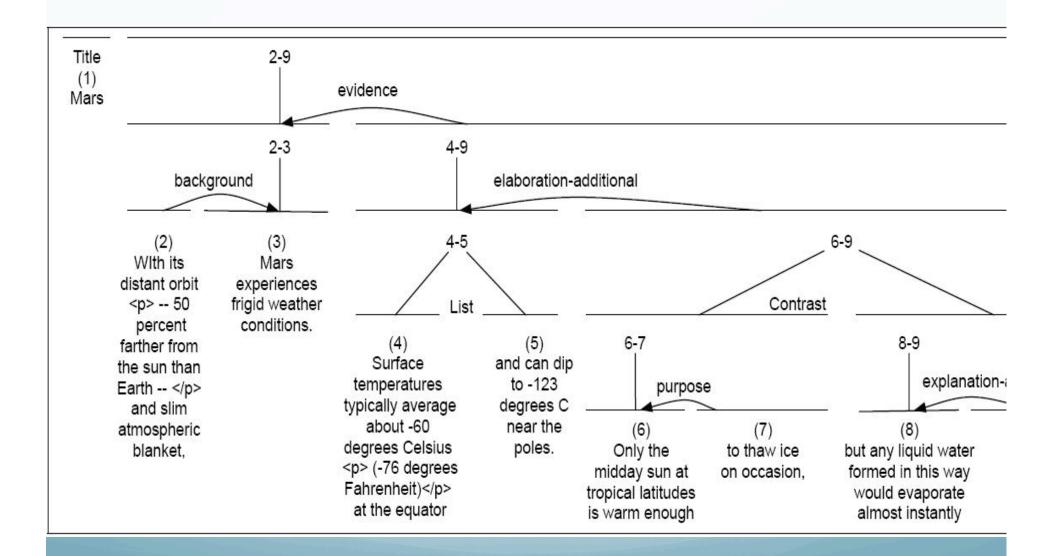
- RST treebank: corpus of WSJ articles with analysis
- RST parsers: Marcu, Peng and Hirst 2014

RST Relations

Evidence

- Effect: Evidence (Satellite) increases R's belief in Nucleus
 - The program really works. (N)
 - I entered all my info and it matched my results. (S)

Relation Name:	Evidence		
Constraints on N:	R might not believe N to a degree satisfactory to W		
Constraints on S:	R believes S or will find it credible		
Constraints on N+S:	R's comprehending S increases R's belief of N		
Effects:	R's belief of N is increased		



GraphBank

- Alternative discourse structure model
 - Wolf & Gibson, 2005
- Key difference:
 - Analysis of text need not be tree-structure, like RST
 - Can be arbitrary graph, allowing crossing dependency
- Similar relations among spans (clauses)
 - Slightly different inventory

Penn Discourse Treebank

- PDTB (Prasad et al, 2008)
 - "Theory-neutral" discourse model
 - No stipulation of overall structure, identifies local rels
- Two types of annotation:
 - Explicit: triggered by lexical markers ('but') b/t spans
 - Arg2: syntactically bound to discourse connective, ow Arg1
 - Implicit: Adjacent sentences assumed related
 - Arg1: first sentence in sequence
- Senses/Relations:
 - Comparison, Contingency, Expansion, Temporal
 - Broken down into finer-grained senses too

Discourse & Summarization

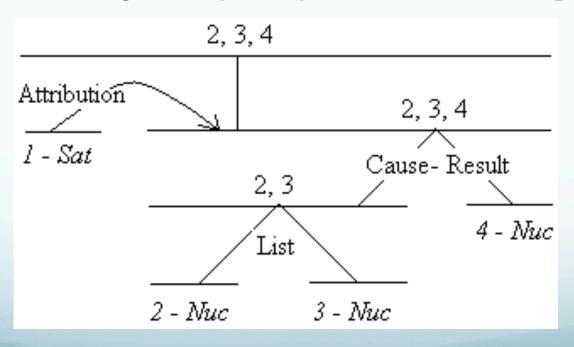
- Intuitively, discourse should be useful
 - Selection, ordering, realization
- Selection:
 - Sense: some relations more important
 - E.g. cause vs elaboration
 - Structure: some information more core
 - Nucleus vs satellite, promotion, centrality
- Compare these, contrast with lexical info
 - Louis et al, 2010

Framework

- Association with extractive summary sentences
 - Statistical analysis
 - Chi-squared (categorical), t-test (continuous)
- Classification:
 - Logistic regression
 - Different ensembles of features
 - Classification F-measure
 - ROUGE over summary sentences

Discourse Structure Example

 1. [Mr. Watkins said] 2. [volume on Interprovincial's system is down about 2% since January] 3. [and is expected to fall further,] 4. [making expansion unnecessary until perhaps the mid-1990s.]



RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse

RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans

RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text => parse
- Discourse structure
 - RST trees
 - Fine-grained, hierarchical structure
 - Clause-based units