Ordering by Optimization & Content Realization

Ling573 Systems and Applications May 10, 2016

Roadmap

Ordering by Optimization

- Content realization
 - Goals
 - Broad approaches
 - Implementation exemplars

Ordering as Optimization

- Given a set of sentences to order
- Define a local pairwise coherence score b/t sentences
- Compute a total order optimizing local distances
- Can we do this efficiently?
 - Optimal ordering of this type is equivalent to TSP
 - Traveling Salesperson Problem: Given a list of cities and distances between cities, find the shortest route that visits each city exactly once and returns to the origin city.
 - TSP is NP-complete (NP-hard)

Ordering as TSP

- Can we do this practically?
 - Summaries are 100 words, so 6-10 sentences
 - 10 sentences have how many possible orders? O(n!)
 - Not impossible
 - Alternatively,
 - Use an approximation methods
 - Take the best of a sample

CLASSY 2006

- Formulates ordering as TSP
- Requires pairwise sentence distance measure
 - Term-based similarity: # of overlapping terms
 - Document similarity:
 - Multiply by a weight if in the same document (there, 1.6)
 - Normalize to between 0 and 1 (sqrt of product of selfsim)
 - Make distance: subtract from 1

Practicalities of Ordering

- Brute force: O(n!)
 - "there are **only** 3,628,800 ways to order 10 sentences plus a lead sentence, so exhaustive search is feasible." (Conroy)
- Still,...
 - Used sample set to pick best
 - Candidates:
 - Random
 - Single-swap changes from good candidates
 - 50K enough to consistently generate minimum cost order

Conclusions

- Many cues to ordering:
 - Temporal, coherence, cohesion
 - Chronology, topic structure, entity transitions, similarity
- Strategies:
 - Heuristic, machine learned; supervised, unsupervised
 - Incremental build-up versus generate & rank
- Issues:
 - Domain independence, semantic similarity, reference

Content Realization

Goals of Content Realization

- Abstractive summaries:
 - Content selection works over concepts
 - Need to produce important concepts in fluent NL
- Extractive summaries:
 - Already working with NL sentences
 - Extreme compression: e.g 60 byte summaries: headlines
 - Increase information:
 - Remove verbose, unnecessary content
 - More space left for new information
 - Increase readability, fluency
 - Present content from multiple docs, non-adjacent sents
 - Improve content scoring
 - Remove distractors, boost scores: i.e. % signature terms in doc

Broad Approaches

- Abstractive summaries:
 - Complex Q-A: template-based methods
 - More generally: full NLG: concept-to-text
- Extractive summaries:
 - Sentence compression:
 - Remove "unnecessary" phrases:
 - Information? Readability?
 - Sentence reformulation:
 - Reference handling
 - Information? Readability?
 - Sentence fusion: Merge content from multiple sents

Sentence Compression

- Main strategies:
 - Heuristic approaches
 - Deep vs Shallow processing
 - Information- vs readability- oriented
 - Machine-learning approaches
 - Sequence models
 - HMM, CRF
 - Deep vs Shallow information
 - Integration with selection
 - Pre/post-processing; Candidate selection: heuristic/learned

Form	CLASSY	ISCI	UMd	SumBasic+	Cornell
Initial Adverbials	Υ	M	Υ	Y	Υ
Initial Conj	Υ		Υ	Υ	
Gerund Phr.	Υ	M	М	Υ	M
Rel clause appos	Υ		M	Υ	Υ
Other adv	Y				
Numeric: ages,	Υ				
Junk (byline, edit)	Υ				Υ
Attributives	Υ	Υ		Υ	Υ
Manner modifiers	M	Υ	М		Υ
Temporal modifiers	M	Υ	Υ		Υ
POS: det, that, MD			Υ		
XP over XP			Υ		
PPs (w/, w/o constraint)			Υ		
Preposed Adjuncts			Υ		
SBARs			Υ		М
Conjuncts			Υ		
Content in parentheses		Υ			Υ

Shallow, Heuristic

- CLASSY 2006
 - Pre-processing! Improved ROUGE
 - Previously used automatic POS tag patterns: error-prone
- Lexical & punctuation surface-form patterns
 - "function" word lists: Prep, conj, det; adv, gerund; punct
- Removes:
 - Junk: bylines, editorial
 - Sentence-initial adv, conj phrase (up to comma)
 - Sentence medial adv ("also"), ages
 - Gerund (-ing) phrases
 - Rel. clause attributives, attributions w/o quotes
- Conservative: < 3% error (vs 25% w/POS)

Deep, Minimal, Heuristic

- ICSI/UTD:
 - Use an Integer Linear Programming approach to solve
- Trimming:
 - Goal: Readability (not info squeezing)
 - Removes temporal expressions, manner modifiers, "said"
 - Why?: "next Thursday"
 - Methodology: Automatic SRL labeling over dependencies
 - SRL not perfect: How can we handle?
 - Restrict to high-confidence labels
- Improved ROUGE on (some) training data
 - Also improved linguistic quality scores

Example

A ban against bistros providing plastic bags free of charge will be lifted at the beginning of March.

A ban against bistros providing plastic bags free of charge will be lifted.

Deep, Extensive, Heuristic

- Both UMD & SumBasic+
 - Based on output of phrase structure parse
 - UMD: Originally designed for headline generation
 - Goal: Information squeezing, compress to add content
- Approach: (UMd)
 - Ordered cascade of increasingly aggressive rules
 - Subsumes many earlier compressions
 - Adds headline oriented rules (e.g. removing MD, DT)
 - Adds rules to drop large portions of structure
 - E.g. halves of AND/OR, wholescale SBAR/PP deletion

Integrating Compression & Selection

- Simplest strategy: (Classy, SumBasic+)
 - Deterministic, compressed sentence replaces original
- Multi-candidate approaches: (most others)
 - Generate sentences at multiple levels of compression
 - Possibly constrained by: compression ratio, minimum len
 - E.g. exclude: < 50% original, < 5 words (ICSI)
 - Add to original candidate sentences list
 - Select based on overall content selection procedure
 - Possibly include source sentence information
 - E.g. only include single candidate per original sentence

Multi-Candidate Selection

- (UMd, Zajic et al. 2007, etc)
- Sentences selected by tuned weighted sum of feats
 - Static:
 - Position of sentence in document
 - Relevance of sentence/document to query
 - Centrality of sentence/document to topic cluster
 - Computed as: IDF overlap or (average) Lucene similarity
 - # of compression rules applied
 - Dynamic:
 - Redundancy: $S = \prod_{w \in I} \lambda P(w|D) + (1 \lambda)P(w|C)$
 - # of sentences already taken from same document
- Significantly better on ROUGE-1 than uncompressed
 - Grammaticality lousy (tuned on headlinese)