Summarization Systems & Evaluation

Ling573 Systems and Applications April 5, 2016

Roadmap

- Summarization components:
 - Complex content selection
 - Information ordering
 - Content realization
- Summarization evaluation:
 - Extrinsic
 - Intrinsic:
 - Model-based: ROUGE, Pyramid
 - Model-free

General Architecture

More Complex Settings

- Multi-document case:
 - Key issue: redundancy
 - General idea:
 - Add salient content that is least similar to that already there
- Topic-/query-focused:
 - Ensure salient content related to topic/query
 - Prefer content more similar to topic
 - Alternatively, when given specific question types,
 - Apply more Q/A information extraction oriented approach

Information Ordering

- Goal: Determine presentation order for salient content
- Relatively trivial for single document extractive case:
 - Just retain original document order of extracted sentences
- Multi-document case more challenging: Why?
 - Factors:
 - Story chronological order insufficient alone
 - Discourse coherence and cohesion
 - Create discourse relations
 - Maintain cohesion among sentences, entities
- Template approaches also used with strong query

Content Realization

- Goal: Create a fluent, readable, compact output
- Abstractive approaches range from templates to full NLG
- Extractive approaches focus on:
 - Sentence simplification/compression:
 - Manipulation of parse tree to remove unneeded info
 - Rule-based, machine-learned
 - Reference presentation and ordering:
 - Based on saliency hierarchy of mentions

Examples

- Compression:
 - When it arrives sometime next year in new TV sets, the V-chip will give parents a new and potentially revolutionary device to block out programs they don't want their children to see.
- Coreference:
 - Advisers do not blame Treasury Secretary Paul
 O'Neill, but they recognize a shakeup would help
 indicate U.S. President George W. Bush was working
 to improve matters. Bush pushed out O'Neill and ...

Systems & Resources

- System development requires resources
 - Especially true of data-driven machine learning
- Summarization resources:
 - Sets of document(s) and summaries, info
 - Existing data sets from shared tasks
 - Manual summaries from other corpora
 - Summary websites with pointers to source
 - For technical domain, almost any paper
 - Articles require abstracts...

Component Resources

- Content selection:
 - Documents, corpora for term weighting
 - Sentence breakers
 - Semantic similarity tools (WordNet sim)
 - Coreference resolver
 - Discourse parser
 - NER, IE
 - Topic segmentation
 - Alignment tools

Component Resources

- Information ordering:
 - Temporal processing
 - Coreference resolution
 - Lexical chains
 - Topic modeling
 - (Un)Compressed sentence sets
- Content realization:
 - Parsing
 - NP chunking
 - Coreference

Evaluation

- Extrinsic evaluations:
 - Does the summary allow users to perform some task?
 - As well as full docs? Faster?
 - Example:
 - Time-limited fact-gathering:
 - Answer questions about news event
 - Compare with full doc, human summary, auto summary
 - Relevance assessment: relevant or not?
 - MOOC navigation: raw video vs auto-summary/index
 - Task completed faster w/summary (except expert MOOCers)
- Hard to frame in general, though

Intrinsic Evaluation

- Need basic comparison to simple, naïve approach
- Baselines:
 - Random baseline:
 - Select N random sentences
 - Leading sentences:
 - Select N leading sentences
 - Or LASTEST (N leading sentences from chrono last doc)
 - For news, surprisingly hard to beat
 - (For reviews, last N sentences better.)

Intrinsic Evaluation

- Most common automatic method: ROUGE
 - "Recall-Oriented Understudy for Gisting Evaluation"
 - Inspired by BLEU (MT)
 - Computes overlap b/t auto and human summaries
 - E.g. ROUGE-2: bigram overlap

$$ROUGE2 = \frac{\sum\limits_{S \in \{\text{Re ference Summaries}\} \ bigram \in S}}{\sum\limits_{S \in \{\text{Re ference Summaries}\} \ bigram \in S}} \frac{\sum\limits_{ount(bigram)}}{\sum\limits_{S \in \{\text{Re ference Summaries}\} \ bigram \in S}} count(bigram)}$$

- Also, ROUGE-L (longest seq), ROUGE-S (skipgrams)
- ROUGE-BE: dependency path overlap

ROUGE

- Pros:
 - Automatic evaluation allows tuning
 - Given set of reference summaries
 - Simple measure
- Cons:
 - Even human summaries highly variable, disagreement
 - Poor handling of coherence
 - Okay for extractive, highly problematic for abstractive

Pyramid Evaluation

- Content selection evaluation:
 - Not focused on ordering, readability
- Aims to address issues in evaluation of summaries:
 - Human variation
 - Significant disagreement, use multiple models
 - Analysis granularity:
 - Not just "which sentence"; overlaps in sentence content
 - Semantic equivalence:
 - Extracts vs Abstracts:
 - Surface form equivalence (e.g. ROUGE) penalizes abstr.

Pyramid Units

- Step 1: Extract Summary Content Units (SCUs)
 - Basic content meaning units
 - Semantic content
 - Roughly clausal
 - Identified manually by annotators from model summaries
 - Described in own words (possibly changing)

Example

- A1. The industrial espionage case ...began with the hiring of Jose Ignacio Lopez, an employee of GM subsidiary Adam Opel, by VW as a production director.
- B3. However, <u>he left GM for VW</u> under circumstances, which ...were described by a German judge as "potentially the biggest-ever case of industrial espionage".
- C6. He left GM for VW in March 1993.
- D6. The issue stems from the alleged <u>recruitment of GM's</u> ...procurement chief <u>Jose Ignacio Lopez de Arriortura</u> and seven of Lopez's business colleagues.
- E1. On March 16, 1993, ... Agnacio Lopez De Arriortua, left his job as head of purchasing at General Motor's Opel, Germany, to become Volkswagen's Purchasing ... director.
- F3. In March 1993, Lopez and seven other <u>GM</u> executives moved to <u>VW</u> overnight.

Example SCUs

- SCU1 (w=6): Lopez left GM for VW
 - A1. the hiring of Jose Ignacio Lopez, an employee of GM . . .
 by VW
 - B3. he left GM for VW
 - C6. He left GM for VW
 - D6. recruitment of GM's . . . Jose Ignacio Lopez
 - E1. Agnacio Lopez De Arriortua, left his job . . . at General Motor's Opel . . . to become Volkswagen's . . . Director
 - F3. Lopez . . . GM . . . moved to VW
- SCU2 (w=3) Lopez changes employers in March 1993
 - C6 in March, 1993
 - E1. On March 16, 1993
 - F3. In March 1993

SCU: A cable car caught fire (Weight = 4)

- A. The cause of the fire was unknown.
- B. A cable car caught fire just after entering a mountainside tunnel in an alpine resort in Kaprun, Austria on the morning of November 11, 2000.
- C. <u>A cable car pulling skiers and snowboarders to the Kitzsteinhorn resort, located 60 miles south of Salzburg in the Austrian Alps, caught fire inside a mountain tunnel, killing approximately 170 people.</u>
- D. On November 10, 2000, <u>a cable car filled to capacity caught on fire</u>, trapping 180 passengers inside the Kitzsteinhorn mountain, located in the town of Kaprun, 50 miles south of Salzburg in the central Austrian Alps.

Pyramid Building

- Step 2: Scoring summaries
 - Compute weights of SCUs
 - Weight = # of model summaries in which SCU appears
 - Create "pyramid":
 - n = maximum # of tiers in pyramid = # of model summ.s
 - Actual # of tiers depends on degree of overlap
 - Highest tier: highest weight SCUs
 - Roughly Zipfian SCU distribution, so pyramidal shape
 - Optimal summary?
 - All from top tier, then all from top -1, until reach max size

Ideally informative summary

 Does not include an SCU from a lower tier unless all SCUs from higher tiers are included as well

From Passoneau et al 2005

Pyramid Scores

- T_i = tier with weight i SCUs
 - $T_n = \text{top tier}$; $T_1 = \text{bottom tier}$
- $D_i = \#$ of SCUs in summary on T_i
- Total weight of summary $D = \sum_{i=1}^{n} i * D_i$
- Optimal score for X SCU summary: Max
 - (j lowest tier in ideal summary)

$$\sum_{i=j+1}^{n} i^* |T_i| + j^* (X - \sum_{i=j+1}^{n} |T_i|)$$

Correlation with Other Scores

Table VI. Pearson's Correlation Between the Different Evaluation Metrics Used in DUC 2005. Computed for 25 Automatic Peers Over 20 Test Sets

	Pyr (mod)	Respons-1	Respons-2	ROUGE-2	ROUGE-SU4
Pyr (orig)	0.96	0.77	0.86	0.84	0.80
Pyr (mod)		0.81	0.90	0.90	0.86
Respons-1			0.83	0.92	0.92
Respons-2				0.88	0.87
ROUGE-2					0.98

- > 0.95: effectively indistinguishable
 - > Two pyramid models, two ROUGE models
- > Two humans only 0.83

Pyramid Model

- Pros:
 - Achieves goals of handling variation, abstraction, semantic equivalence
 - Can be done sufficiently reliably
 - Achieves good correlation with human assessors
- Cons:

Pyramid Model

- Pros:
 - Achieves goals of handling variation, abstraction, semantic equivalence
 - Can be done sufficiently reliably
 - Achieves good correlation with human assessors
- Cons:
 - Heavy manual annotation:
 - Model summaries, also all system summaries
 - Content only