Discourse & Topic-orientation

Ling 573 Systems & Applications April 19, 2016

TAC 2010 Results

- For context:
 - LEAD baseline: first 100 words of chron. last article

System	ROUGE-2
LEAD baseline	0.05376
MEAD	0.05927
Best (peer 22: IIIT)	0.09574

41 official submissions: 10 below LEAD 14 below MEAD

IIIT System Highlights

- Three main features:
 - DFS:
 - Ratio of # docs w/word to total # docs in cluster
 - SP:
 - Sentence position
 - KL: KL divergence
- Weighted by support vector regression
- Tried novel, sophisticated model
 - 0.03 WORSE

Roadmap

- Discourse for content selection:
 - Discourse Structure
 - Discourse Relations
 - Results
- Topic-orientation
 - Key idea
 - Common strategies

Penn Discourse Treebank

- PDTB (Prasad et al, 2008)
 - "Theory-neutral" discourse model
 - No stipulation of overall structure, identifies local rels
- Two types of annotation:
 - Explicit: triggered by lexical markers ('but') b/t spans
 - Arg2: syntactically bound to discourse connective, ow Arg1
 - Implicit: Adjacent sentences assumed related
 - Arg1: first sentence in sequence
- Senses/Relations:
 - Comparison, Contingency, Expansion, Temporal
 - Broken down into finer-grained senses too

Discourse & Summarization

- Intuitively, discourse should be useful
 - Selection, ordering, realization
- Selection:
 - Sense: some relations more important
 - E.g. cause vs elaboration
 - Structure: some information more core
 - Nucleus vs satellite, promotion, centrality
- Compare these, contrast with lexical info
 - Louis et al, 2010

Framework

- Association with extractive summary sentences
 - Statistical analysis
 - Chi-squared (categorical), t-test (continuous)
- Classification:
 - Logistic regression
 - Different ensembles of features
 - Classification F-measure
 - ROUGE over summary sentences

RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text => parse
- Discourse structure
 - RST trees
 - Fine-grained, hierarchical structure
 - Clause-based units

Discourse Structure Example

• 1. [Mr. Watkins said] 2. [volume on Interprovincial's system is down about 2% since January] 3. [and is expected to fall further,] 4. [making expansion unnecessary until perhaps the mid-1990s.]

Discourse Structure Features

- Satellite penalty:
 - For each EDU: # of satellite nodes b/t it and root
 - 1 satellite in tree: (1), one step to root: penalty = 1
- Promotion set:
 - Nuclear units at some level of tree
 - At leaves, EDUs are themselves nuclear
- Depth score:
 - Distance from lowest tree level to EDUs highest rank
 - 2,3,4: score= 4; 1: score= 3
- Promotion score:
 - # of levels span is promoted:
 - 1: score = 0; 4: score = 2; 2,3: score = 3

Converting to Sentence Level

- Each feature has:
 - Raw score
 - Normalized score: Raw/# wds in document

- Sentence score for a feature:
 - Max over EDUs in sentence

"Semantic" Features

- Capture specific relations on spans
- Binary features over tuple of:
 - Implicit vs Explicit
 - Name of relation that holds
 - Top-level or second level
 - If relation is between sentences,
 - Indicate whether Arg1 or Arg2
- E.g. "contains Arg1 of Implicit Restatement relation"
- Also, # of relations, distance b/t args w/in sentence

Example I

• In addition, its machines are easier to operate, so customers require less assistance from software.

- Is there an explicit discourse marker?
 - Yes, 'so'
- Discourse relation?
 - 'Contingency'

Example II

- (1)Wednesday's dominant issue was Yasuda & Marine Insurance, which continued to surge on rumors of speculative buying. (2) It ended the day up 80 yen to 1880 yen.
- Is there a discourse marker?
 - No
- Is there a relation?
 - Implicit (by definition)
- What relation?
 - Expansion (or more specifically (level 2) restatement)
- What Args? (1) is Arg1; (2) is Arg2 (by definition)

Non-discourse Features

- Typical features:
 - Sentence length
 - Sentence position
 - Probabilities of words in sent: mean, sum, product
 - # of signature words (LLR)

Significant Features

- Associated with summary sentences
 - Structure: depth score, promotion score
 - Semantic: Arg1 of Explicit Expansion, Implicit Contingency, Implicit Expansion, distance to arg
 - Non-discourse: length, 1st in para, offset from end of para, # signature terms; mean, sum word probabilities

Significant Features

- Associated with non-summary sentences
 - Structural: satellite penalty
 - Semantic: Explicit expansion, explicit contingency,
 Arg2 of implicit temporal, implicit contingency,...
 - # shared relations
 - Non-discourse: offset from para, article beginning; sent. probability

Observations

- Non-discourse features good cues to summary
- Structural features match intuition

- Semantic features:
 - Relatively few useful for selecting summary sentences
 - Most associated with non-summary, but most sentences are non-summary

Evaluation

- Structural best:
 - Alone and in combination
- Best overall combine all types
 - Both F-1 and ROUGE

Features used	Acc	P	R	F
structural	78.11	63.38	22.77	33.50
semantic	75.53	44.31	5.04	9.05
non-discourse (ND)	77.25	67.48	11.02	18.95
ND + semantic	77.38	59.38	20.62	30.61
ND + structural	78.51	63.49	26.05	36.94
semantic + structural	77.94	58.39	30.47	40.04
structural + semantic + ND	78.93	61.85	34.42	44.23

Graph-Based Comparison

- Page-Rank-based centrality computed over:
 - RST link structure
 - Graphbank link structure
 - LexRank (sentence cosine similarity)
- Quite similar:
 - F1: LR > GB > RST
 - ROUGE: RST > LR > GB

Notes

- Single document, short (100 wd) summaries
 - What about multi-document? Longer?
- Structure relatively better, all contribute

- Manually labeled discourse structure, relations
 - Some automatic systems, but not perfect
 - However, better at structure than relation ID
 - Esp. implicit

Topic-Orientation

Key Idea

- (aka "query-focused", "guided")
- Motivations:
 - Extrinsic task vs generic
 - Why are we creating this summary?
 - Viewed as complex question answering (vs factoid)
 - High variation in human summaries
 - Depending on perspective, different content focused
- Idea:
 - Target response to specific question, topic in docs
 - Later TACs identify topic categories and aspects
 - E.g Natural disasters: who, what, where, when...

Basic Strategies

- Most common approach →
- Adapt existing generic summarization strategies
 - Augment techniques to focus on query/topic
 - E.g. query-focused LexRank, query-focused CLASSY
- Information extraction strategies
 - View topic category + aspects as template
 - Similar to earlier MUC tasks
 - Identify entities, sentences to complete
 - Generate summary

Focusing LexRank

- Original Continuous LexRank:
 - Compute sentence centrality by similarity graph
 - Weighting: cosine similarity between sentences
 - Damping factor 'd' to jump to other clusters (uniform)

$$p(u) = \frac{d}{N} + (1 - d) \sum_{v \in adj(u)} \frac{\cos sim(u, v)}{\sum_{z \in adj(v)} \cos sim(z, v)} p(v)$$

- Given a topic (American Tobacco Companies Overseas)
 - How can we focus the summary?

Query-focused LexRank

- Focus on sentences relevant to query
 - Rather than uniform jump
- How do we measure relevance?
 - Tf*idf-like measure over sentences & query
 - Compute sentence-level "idf"
 - N = # of sentences in cluster; sf_w = # of sentences with w

$$idf_{w} = \log\left(\frac{N+1}{0.5 + sf_{w}}\right)$$

$$rel(s \mid q) = \sum_{w \in q} \log(tf_{w,s} + 1) * \log(tf_{w,q} + 1) * idf_{w}$$