
Deliverable #2
Alex Spivey, Eli Miller, Mike Haeger, and Melina Koukoutchos

April 25, 2017

System
Architecture

Content Selection
Preprocessing

Feature Extraction

The Model

Logistic Regression

Sentence Selection

Feature Extraction/TF-IDF
TF-IDF scores are collected for each word in the sentence, with the document

frequency taken from each document in the dataset

The average TF-IDF score for each sentence is computed and used as a feature in the

logistic regression model

The Model
Logistic regression model

Current features: position, TF-IDF

Labels: 1=in summary, 0=not in summary

We don’t do straight classification

We use probabilities calculated by model as scores

Sentence Selection
Select highest scoring sentence

Calculate cosine similarity

Prune sentences

Repeat until there is enough summary content

Information Ordering & Content Realization
Still to come!

For now:

Sentences are ordered by scores

Content is printed until adding another sentence would exceed 100 words

Results

ROUGE Recall

ROUGE-1 0.18765

ROUGE-2 0.0434

ROUGE-3 0.01280

ROUGE-4 0.00416

A Sample Summary

NEW YORK _ With the indictments barely unsealed

against fourpolice officers in the Amadou Diallo shooting,

a battle is alreadytaking shape over physical evidence in

the case, as lawyers andexperts seek to buttress their own

versions of what happened basedon entrance wounds,

bullet trajectories and other forensic details.

Issues & Successes
● Preprocessing

○ Confusing data directories

○ Some difficult to work with file formats

● Gold standard data

○ Gold standard summaries are generative, not extractive

○ Treated gold standard summaries as another document for this milestone

○ Might also try cosine similarity to gold standard, or another option, when there is a more complete

system to tune.

● It does actually run to completion

Resources
M. Wang, X. Wang, C. Li and Z. Zhang. 2008. Multi-document Summarization Based

on Word Feature Mining. 2008 International Conference on Computer Science and

Software Engineering, 1: 743-746.

You Ouyang, Wenjie Lia, Sujian Lib, and Qin Lu. 2011. Applying regression models to

query-focused multi-document summarization. Information Processing Management,

47(2): 227-237.

Multi-Document Summarization
DELIVERABLE 2: BASE END-TO-END SUMMARIZATION SYSTEM

TARA CLARK, KATHLEEN PREDDY, AND KRISTA WATKINS

System
Architecture
Our system is a collection of
independent Python modules,
linked together by the
Summarizer module.

Text Processing

• Read in the Topics file as a tree

• Use the Topics document id’s to read in Document objects

• Store documents in a DocumentLibrary

• Sentence breaking: breakSent Perl script

• Tokenization:

• NLTK

• NLTK, stemmed and downcased

Caching
The Summarizer module runs
caching for training or devtest
documents if no cache is found.

IDF Document caching is
manual. IDF Values caching can
be run separately, following
document caching

Caching

• Use Pickle for caching:

• Topic Library for training/devtest data sets

• Document Library for training/devtest data sets

• IDF Document Library corpus

• IDF score dictionary

• Caches each item as it is processed

Content
Selection
We use the LexRank algorithm,
followed by filters for summary
length and sentence similarity.

Content Selection

• Input: Documents in a Topic

• Algorithm: LexRank

• Output: List of best sentences, ordered by rank

LexRank: A Graphical Approach
• Nodes are sentences; edges are similarity scores

• Nodes: TF-IDF vector over each stem in the sentence

𝑡𝑓𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐

𝑖𝑑𝑓𝑡 = log(
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
)

Note – Unknown terms receive an IDF score of log(𝐷)

• Edges: Cosine similarity between sentences X and Y

σ𝑤∈𝑥,𝑦 𝑡𝑓𝑤,𝑥𝑡𝑓𝑤,𝑦 𝑖𝑑𝑓𝑤
2

σ𝑥𝑖∈𝑥
(𝑡𝑓𝑥𝑖,𝑥 𝑖𝑑𝑓𝑥𝑖)

2
∗ σ𝑦𝑖∈𝑦

(𝑡𝑓𝑦𝑖,𝑦 𝑖𝑑𝑓𝑦𝑖)
2

Prune edges below 0.1 threshold

Power Method

• Set normalized vector 𝑝

• Update 𝑝 dot product of transposed graph and current 𝑝

• Apply until convergence

• Apply scores from 𝑝 vector to the original Sentence objects

• Return the best sentences, without going over 100 words or repeating yourself (cosine
similarity < 0.95)

Information Ordering

• Input: List of sentences from content selection

• Output: Copy of this list

Content Realization

• Input: List of sentences from Information Ordering

• Output: Write each sentence on a new line to the output file

Issues and Successes

• File reading

• Choosing the appropriate files to improve performance

• Switching from xml.etree.ElementTree.parse() to BeautifulSoup

• Sentence breaking

• Performance of breakSent with wrapper

• Adding abbreviations to the breakSent abbreviation dictionary

• Need to handle decimal breaks

• Need to make improvements in breaking sentences with quotations

Issues and Successes
• Content Selection

• Long sentences

• Average summary length of 2.087 sentences

• Next steps: Check the content selection algorithm to ascertain that it is not favoring long sentences.

• Similarity threshold value

• Still too many similar sentences

• Next steps: Lower the similarity threshold value

• Punctuation

• Single punctuation is stripped, but double punctuation like ‘’ and `` are treated as tokens

• Possibly overweighting the value of quotations for some topics

• Next steps: Remove double punctuation

• Short summaries (1 sentence long)

• 26% of summaries

• Next steps:

• Check that the adjacency matrix is keeping good paths.

• Check the sentence lengths in the documents.

• Check that we’re reading in all the sentences appropriately.

Results

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ROUGE 1 ROUGE 2 ROUGE 3 ROUGE 4

Recall

Recall

Related Reading

• Günes Erkan , Dragomir R. Radev, LexRank: graph-based lexical centrality as salience in
text summarization, Journal of Artificial Intelligence Research, v.22 n.1, p.457-479, July
2004

• Ani Nenkova , Rebecca Passonneau , Kathleen McKeown, The Pyramid Method:
Incorporating human content selection variation in summarization evaluation, ACM
Transactions on Speech and Language Processing (TSLP), v.4 n.2, p.4-es, May
2007 [doi>10.1145/1233912.1233913]

• Karen Spärck Jones, Automatic summarising: The state of the art, Information
Processing and Management: an International Journal, v.43 n.6, p.1449-1481,
November, 2007 [doi>10.1016/j.ipm.2007.03.009]

http://dl.acm.org/citation.cfm?id=1622501&CFID=928129044&CFTOKEN=29913628
http://dl.acm.org/citation.cfm?id=1233913&CFID=928129044&CFTOKEN=29913628
http://doi.acm.org/10.1145/1233912.1233913
http://dl.acm.org/citation.cfm?id=1285154&CFID=928129044&CFTOKEN=29913628
http://dx.doi.org/10.1016/j.ipm.2007.03.009

Questions?

Multi-document
Summarization

Resources

Our Inspiration

●
●

●

System
Architecture

System Design

●

●
●

○

●

●
●
●

Content
Selection

Content Selection Method
●

○
○

●

●
○
○

for each DocumentSet:
 #Find query terms
 potentialQueryTerms := PosTagger(title) +
PosTagger(narrative)
 for term in potentialQueryTerms:
 if term is in [NN, VB, JJ, RB]:
 add to queryTerms

 #Find signature terms
 for each Sentence:
 for each token:
 calculate log-likelihood
 if log-likelihood > threshold
 add to signatureTerms

 #Pick sentences
 for each Sentence:
 if sentlen >= 8:
 for each token:
 if token is in queryTerms:
 score += 1/2
 if token is in signatureTerms:
 score += 1/2
 score /= numTokens
 add (sent, score) to priorityQ
 while (summaryLen < 100):
 add priorityQ.pop() to summary

Formulas
●

○
○
○

●
○
○
○

Information
Ordering

Information Ordering Strategy
●

Content
Realization

Content Realization
●

Issues and
Successes

Ideas to Explore
●

●

●
●
●

○

Thanks for
listening!

Ling 573 Project
Automatic Summarization System

Wenxi Lu, Yi Zhu, Meijing Tian

Outline
● System Architecture
● Data
● Preprocessing
● Content Selection
● Neural Network
● Issues and Discussion
● References

System Architecture

Data
● Training:

○ CNN/DailyMail articles for sentence-level
single-document summarizations

■ CNN: 83,568 articles
■ DailyMail: 193,981 articles

● Test:
○ 2010 TAC shared task dataset (46

topic-oriented document)
○ 500 samples from DailyMail testset (10346)

Preprocessing
● Tokenization
● Lowercase
● Vocabulary List

○ The union of the CNN, DailyMail words (~200k)
○ Sort according to word probability
○ Set a threshold, extracting top ~20k words

Preprocessing
● DailyMail Statistics

Content Selection
● Inspired by Hong & Nenkova (2014)
● Goal: select most salient sentences from articles in given document for

summarization
● Sentence level extraction instead of word level extraction

Content Selection
Word Probability

c(w): number of times word w occurs in the given document

N: total number of word tokens in the document

Content Selection

Tf-idf

tf(t,d): raw count of word t appears in article d
N: total number of articles in the document
 :number of articles in the document where the term t appears

Content Selection

 LexRank

x, y : sentences in article

w: word in sentence

Content Selection
● Input:

○ A single document with sentences (from several articles)

● Output:

○ Labels of each sentence in the document

○ Label 1 or 0

○ Add sentences with label 1 to summary

Neural Network
● Input

○ A single document with sentences

● Output
○ Labels of each sentence in the document

● Loss Function
○ Cross entropy (sigmoidal loss)

● Summary
○ Single-document summarization

■ all sentences with label 1
○ Multi-document summarization

■ the most plausible sentence for each doc
■ merge to a single summary in document

chronological order Neural Summarization by Extracting Sentences and Words [Cheng et al; 2016]

http://www.aclweb.org/anthology/P16-1046

Neural Network
● Hyperparameters

○ Pretrained embeddings: Glove
○ Word embedding dim: 100
○ CNN filter size: 1 ~ 7
○ Filter nums (sentence dim): 300
○ RNN hidden dim: 750
○ Max sentence length: 40
○ Max sentence number: 150
○ Batch size: 100
○ Epoch: 10 (never reached :))

● Optimizer
○ Adam (default for tensorflow)

 Neural Summarization by Extracting Sentences and Words [Cheng et al; 2016]

http://www.aclweb.org/anthology/P16-1046

Experiments and Results
● Regression Model

○ Train models on CNN training set (3000 files)
○ Test on TAC 10 test set

● Neural Network Model
○ Train models on CNN and DailyMail training set
○ Test both models on TAC10 test set
○ Test DailyMail model on the DailyMail test set

Experiments and Results (TAC10 test data)
Rec (R1) Rec (R2) Rec (R3) Rec (R4)

Random 0.14647 0.0256 0.00554 0.00142

Lead 0.18094 0.0438 0.01302 0.00395

Reg 0.19351 0.0501 0.0167 0.0057

NN (2) 0.22868 0.05655 0.0154 0.00394

Best Peer 0.29261 0.08206 0.0278 0.01069

Oracle 0.42004 0.25752 0.21786 0.20666

Experiments and Results (TAC10 test data)

Experiments and Results (DailyMail）

Model Rouge-1 Rouge-2

Cheng et al. 0.212 0.083

NN
 (acc = ~80%)

0.531 0.22

Issues & Discussion
● Regression Model

○ Training accuracy: Not enough features (3 so far)
○ Need more training

● Neural Network Model
○ Just wait :)

■ If seems working, just still wait …
■ If not working, kill it and check the code

○ Discrepancy between loss function and the final target
○ Domain adaptation problem (CNN & DailyMail to TAC)
○ Difference between single-document summarization and multi-document summarization

■ Strategies to merge summaries
○ Preprocessing could be crucial

■ Sentence splitting
○ TAC training data available but not used

Issues & Discussion
● Use more data as training data (add label for each sentence)
● Improve data preprocessing
● Use word-level extraction instead of sentence level extraction
● Information ordering and content realization
● Alternative document merge strategies

○ Fixed length of summary for each document

● Change network architecture for multi-document summarizations
○ Might be appropriate to model ROUGE directly or via reinforcement learning
○ Shifting to Abstractive summarization (pure seq2seq)

■ Sample the rest of the words and use rouge as rewards

References

➢ Kai Hong and Ani Nenkova. 2014. Improving the estimation of word importance for news multi- document
summarization. In EACL. pages 712–721.

➢ Gu ̈nes Erkan and Dragomir R Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research 22:457–479.

➢ Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems. pages 3104–3112.

➢ Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Berlin, Germany, pages 484–494.
http://www.aclweb.org/anthology/P16-1046.

Reference Scores
�  TAC 2010 guided summarization task:

�  ROUGE-2:
�  LEAD baseline: 0.05376

�  First 100 words of latest articles

�  MEAD baseline: 0.05927
�  Default MEAD settings

�  Best official: 0.09574

	AlexEliMelinaD2_presentation
	D2_presentation_tclrk_kpreddy_kwtkns
	Presentation_JoannaAnnaRyan
	573_D2_Presentation_Wenxi_Yi_Meijing
	Overview

