Alternative Perspectives on Summarization

Systems & Applications Ling 573 May 25, 2017

Roadmap

- Abstractive summarization example
 - Using Abstract Meaning Representation
- Review summarization:
 - Basic approach
 - Learning what users want
- Speech summarization:
 - Application of speech summarization
 - Speech vs Text
 - Text-free summarization

Abstractive Summarization

- Basic components:
 - Content selection
 - Information ordering
 - Content realization
 - Comparable to extractive summarization
- Fundamental differences:
 - What do the processes operate on?
 - Extractive? Sentences (or subspans)
 - Abstractive? Major question
 - Need some notion of concepts, relations in text

Levels of Representation

- How can we represent concepts, relations from text?
 - Ideally, abstract away from surface sentences
- Build on some deep NLP representation:
 - Dependency trees: (Cheung & Penn, 2014)
 - Discourse parse trees: (Gerani et al, 2014)
 - Logical Forms
 - Abstract Meaning Representation (AMR): (Liu et al, 2015)

Representations

- Different levels of representation:
 - Syntax, Semantics, Discourse
- All embed:
 - Some nodes/substructure capturing concepts
 - Some arcs, etc capturing relations
 - In some sort of graph representation (maybe a tree)

• What's the right level of representation??

Typical Approach

Parse original documents to deep representation

- Manipulate resulting graph for content selection
 - Splice dependency trees, remove satellite nodes, etc
- Generate based on resulting revised graph

All rely on parsing/generation to/from representation

AMR

- "Abstract Meaning Representation"
 - Sentence-level semantic representation
 - Nodes: Concepts:
 - English words, PropBank predicates, or keywords ('person')
 - Edges: Relations:
 - PropBank thematic roles (ARG0-ARG5)
 - Others including 'location', 'name', 'time', etc...
 - ~100 in total

AMR 2

- AMR Bank: (now) ~40K annotated sentences
- JAMR parser: 63% F-measure (2015)
 - Alignments b/t word spans & graph fragments

 Example: "I saw Joe's dog, which was running in the garden."

Liu et al, 2015.

Summarization Using Abstract Meaning Representation

Use JAMR to parse input sentences to AMR

- Create unified document graph
 - Link coreferent nodes by "concept merging"
 - Join sentence AMRs to common (dummy) ROOT
 - Create other connections as needed
- Select subset of nodes for inclusion in summary
- *Generate surface realization of AMR (future work)

Toy Example

Liu et al, 2015.

Creating a Unified Document Graph

- Concept merging:
 - Idea: Combine nodes for same entity in diff't sentences
 - Highly Constrained
 - Applies ONLY to Named entities & dates
 - Collapse multi-node entities to single node
 - Merge ONLY identical nodes
 - Barak Obama = Barak Obama; Barak Obama ≠ Obama
 - Replace multiple edges b/t two nodes with unlabeled edge

Merged Graph Example

Content Selection

- Formulated as subgraph selection
 - Modeled as Integer Linear Programming (ILP)
- Maximize the graph score (over edges, nodes)
 - Inclusion score for nodes, edges
 - Subject to:
 - Graph validity: edges must include endpoint nodes
 - Graph connectivity
 - Tree structure (one incoming edge/node)
 - Compression constraint (size of graph in edges)
- Features: Concept/label, frequency, depth, position,
 - Span, NE?, Date?

Evaluation

- Compare to gold-standard "proxy report"
 - ~ Single document summary In style of analyst's report
 - All sentences paired w/AMR
 - Fully intrinsic measure:
 - Subgraph overlap with AMR
 - Slightly less intrinsic measure:
 - Generate Bag-of-Phrases via most frequent subspans
 - Associated with graph fragments
 - Compute ROUGE-1, aka word overlap

Evaluation

Results:

- ROUGE-1: P: 0.5; R: 0.4; F: 0.44
 - Similar for manual AMR and automatic parse
- Topline:
 - Oracle: P: 0.85; R: 0.44; F: 0.58
 - Based on similar bag-of-phrase generation from gold AMR

Summary

- Interesting strategy based on semantic represent'n
 - Builds on graph structure over deep model
 - Promising strategy
- Limitations:
 - Single-document
 - Does extension to multi-doc make sense?
 - Literal matching:
 - Reference, lexical content
 - Generation

Review Summaries

Review Summary Dimensions

- Use purpose: Product selection, comparison
- Audience: Ordinary people/customers
- Derivation (extactive vs abstractive): Extractive+
- Coverage (generic vs focused): Aspect-oriented
- Units (single vs multi): Multi-document
- Reduction: Varies
- Input/Output form factors (language, genre, register, form)
 - ??, user reviews, less formal, pros & cons, tables, etc

Sentiment Summarization

- Classic approach: (Hu and Liu, 2004)
- Summarization of product reviews (e.g. Amazon)
 - Identify product features mentioned in reviews
 - Identify polarity of sentences about those features
 - For each product,
 - For each feature,
 - For each polarity: provide illustrative examples

Example Summary

- Feature: picture
 - Positive: 12
 - Overall this is a good camera with a really good picture clarity.
 - The pictures are absolutely amazing the camera captures the minutest of details.
 - After nearly 800 pictures I have found that this camera takes incredible pictures.
 - ...
 - Negative: 2
 - The pictures come out hazy if your hands shake even for a moment during the entire process of taking a picture.
 - Focusing on a display rack about 20 feet away in a brightly lit room during day time, pictures produced by this camera were blurry and in a shade of orange.

Learning Sentiment Summarization

- Classic approach is heuristic:
 - May not scale, etc.
- What do users want?
 - Which example sentences should be selected?
 - Strongest sentiment?
 - Most diverse sentiments?
 - Broadest feature coverage?

Review Summarization Factors

- Posed as optimizing score for given length summary
 - Using a sentence extractive strategy
- Key factors:
 - Sentence sentiment score
 - Sentiment mismatch: b/t summary and product rating
 - Diversity:
 - Measure of how well diff't "aspects" of product covered
 - Related to both quality of coverage, importance of aspect

Review Summarization Models I

- Sentiment Match (SM): Neg(Mismatch)
 - Prefer summaries w/sentiment matching product
 - Issue?
 - Neutral rating → neutral summary sentences
 - Approach: Force system to select stronger sents first

Review Summarization Models II

- Sentiment Match + Aspect Coverage (SMAC):
 - Linear combination of:
 - Sentiment intensity, mismatch, & diversity
 - Issue?
 - Optimizes overall sentiment match, but not per-aspect

Review Summarization Models III

- Sentiment-Aspect Match (SAM):
 - Maximize coverage of aspects
 - *consistent* with per-aspect sentiment
 - Computed using probabilistic model
 - Minimize KL-divergence b/t summary, orig documents

Human Evaluation

- Pairwise preference tests for different summaries
 - Side-by-side, along with overall product rating
 - Judged: No pref, Strongly Weakly prefer A/B
- Also collected comments that justify rating
- Usually some preference, but not significant
 - Except between SAM (highest) and SMAC (lowest)
- Do users care at all?
 - Yes!! SMAC significantly better than LEAD baseline
 - (70% vs 25%)

Qualitative Comments

- Preferred:
 - Summaries with list (pro vs con)
- Disliked:
 - Summary sentences w/o sentiment
 - Non-specific sentences
 - Inconsistency b/t overall rating and summary
- Preferences differed depending on overall rating
 - Prefer SMAC for neutral vs SAM for extremes
 - (SAM excludes low polarity sentences)

Conclusions

- Ultimately, trained meta-classifier to pick model
 - Improved prediction of user preferences
- Similarities and contrasts w/TAC:
 - Similarities:
 - Diversity ~ Non-redundancy
 - Product aspects ~ Topic aspects: coverage, importance
 - Differences:
 - Strongly task/user oriented
 - Sentiment focused (overall, per-sentence)
 - Presentation preference: lists vs narratives

Speech Summarization

Speech Summary Applications

- Why summarize speech?
 - Meeting summarization
 - Lecture summarization
 - Voicemail summarization
 - Broadcast news
 - Debates, etc....

Speech and Text Summarization

- Commonalities:
 - Require key content selection
 - Linguistic cues: lexical, syntactic, discourse structure
 - Alternative strategies: extractive, abstractive

Speech vs Text

- Challenges of speech (summarization):
 - Recognition (and ASR errors)
 - Downstream NLP processing issues, errors
 - Segmentation: speaker, story, sentence
 - Channel issues (anchor vs remote)
 - Disfluencies
 - Overlaps
 - "Lower information density": off-talk, chitchat, etc
 - Generation: text? Speech? Resynthesis?
 - Other text cues: capitalization, paragraphs, etc
- New information: audio signal, prosody, dialog structure

Text vs. Speech Summarization (NEWS)

Hirschberg, 2006

Current Approaches

Predominantly extractive

- Significant focus on compression
 - Why?
 - Fluency: raw speech is often messy
 - Speed: speech is (relatively) slow, if using playback
- Integration of speech features

Current Data

- Speech summary data:
 - Broadcast news
 - Lectures
 - Meetings
 - Talk shows
 - Conversations (Switchboard, Callhome)
 - Voicemail

Common Strategies

- Basically, do ASR and treat like text
 - Unsupervised approaches:
 - Tf-idf cosine; LSA; MMR
 - Classification-based approaches:
 - Features include:
 - Sentence position, sentence length, sentence score/weight
 - Discourse & local context features
 - Modeling approaches:
 - SVMs, logistic regression, CRFs, etc

What about "Speech"?

- Automatic sentence segmentation
- Disfluency tagging, filtering
- Speaker-related features:
 - Speaker role (e.g. anchor), proportion of speech
- ASR confidence scores:
 - Intuition: use more reliable content
- Prosody:
 - Pitch, intensity, speaking rate
 - Can indicate

What about "Speech"?

- Automatic sentence segmentation
- Disfluency tagging, filtering
- Speaker-related features:
 - Speaker role (e.g. anchor), proportion of speech
- ASR confidence scores:
 - Intuition: use more reliable content
- Prosody:
 - Pitch, intensity, speaking rate
 - Can indicate: emphasis, new topic, new information

Speech-focused Summarization

- Intuition:
 - How something is said is as important as what is said
- Hypothesis:
 - Speakers use pitch, intensity, speaking rate to mark important information
- Test:
 - Can we do speech summarization without speech transcription?
 - At least competitively with ASR
 - Jauhar, Chen, and Metze 2013; Maskey & Hirschberg, '05,'06

Approach

- Maskey & Hirschberg, 2006
- Data: Broadcast News (e.g. CNN)
 - Single-document summarization
 - Has sentence, turn, topic annotation
- Bayesian Network model here:
 - Later HMM model:
 - Summary vs non-summary states

Approach

- Maskey & Hirschberg, 2006
- Data: Broadcast News (e.g. CNN)
 - Single-document summarization
 - Has sentence, turn, topic annotation
- Bayesian Network model here:
 - Later used HMM model:
 - Summary vs non-summary states
- Observations:
 - Acoustic-prosodic measures: pitch, intensity,...
 - Structural features: which speaker, role, position, etc
 - Lexical: word information
 - Discourse features: Ratio of given/new information

Results

- Acoustic, speaker results competitive w/lexical
 - Combined best

Features	ROUGE score
All features	0.8
Lexical	0.7
Acoustic+Structural	0.68
Acoustic	0.63
Baseline	0.5

Summary

- Speech summarization:
 - Builds on text based models
- Extends to
 - Overcome speech-specific challenges
 - Exploit speech-specific cues
- Can be highly domain/task dependent
- Highly challenging

Conclusions

- Summarization:
 - Broad range of applications
 - Differ across dimensions
 - Delved into TAC summarization in depth
 - Draws on wide range of:
 - Shallow, deep NLP methods
 - Machine learning models
 - Many remaining challenges, opportunities

Reminders

Final code deliverable due Sunday

Doodle for presentation times

Manual evaluation instructions/data out Monday