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Roadmap

® Abstractive summarization example
® Using Abstract Meaning Representation

® Review summarization:
® Basic approach
® | earning what users want

® Speech summarization:

® Application of speech summarization
® Speech vs Text
® Text-free summarization




Abstractive Summarization

® Basic components:
® Content selection
® |nformation ordering

® (Content realization
e Comparable to extractive summarization

® Fundamental differences:
e What do the processes operate on?
® Extractive? Sentences (or subspans)

® Abstractive? Major question
® Need some notion of concepts, relations in text




Levels of Representation

® How can we represent concepts, relations from text?
® |deally, abstract away from surface sentences

® Build on some deep NLP representation:
® Dependency trees: (Cheung & Penn, 2014)
® Discourse parse trees: (Gerani et al, 2014)

® | ogical Forms

® Abstract Meaning Representation (AMR): (Liu et al, 2015)




Representations

® Different levels of representation:
® Syntax, Semantics, Discourse

* All embed:
® Some nodes/substructure capturing concepts
® Some arcs, etc capturing relations
® |n some sort of graph representation (maybe a tree)

® What's the right level of representation??




Typical Approach

Parse original documents to deep representation

Manipulate resulting graph for content selection
e Splice dependency trees, remove satellite nodes, etc

Generate based on resulting revised graph

All rely on parsing/generation to/from representation




AMR

® “Abstract Meaning Representation”
® Sentence-level semantic representation

® Nodes: Concepts:
® English words, PropBank predicates, or keywords (‘person’)

® Fdges: Relations:
® PropBank thematic roles (ARGO-ARGD)
® Others including ‘location’, ‘name’, ‘time’, etc...
e ~100 in total




AMR 2

* AMR Bank: (now) ~40K annotated sentences

® JAMR parser: 639% F-measure (2015)
e Alignments b/t word spans & graph fragments

® Example: “I saw Joe’s dog, which was running in
the garden.”




Summarization Using

Abstract Meanin

g Representation

® Use JAMR to parse input sentences to AMR

® Create unified document graph
® | ink coreferent nodes by “concept merging”
® Join sentence AMRs to common (dummy) ROOT
® (Create other connections as needed

® Select subset of nodes for inclusion in summary

*Generate surface realization of AMR (future




Toy Example

Sentence A: | saw Joe’s dog, which was running in the garden.
Sentence B: The dog was chasing a cat.

v

—» Summary: Joe's dog was chasing a cat in the garden.



Creating a
Unified Document Graph

® Concept merging:
® |dea: Combine nodes for same entity in diff't sentences
® Highly Constrained

® Applies ONLY to Named entities & dates
® Collapse multi-node entities to single node

® Merge ONLY identical nodes
® Barak Obama = Barak Obama; Barak Obama # Obama

® Replace multiple edges b/t two nodes with unlabeled edge




Merged Graph Example




Content Selection

® Formulated as subgraph selection
® Modeled as Integer Linear Programming (ILP)

® Maximize the graph score (over edges, nodes)
® [nclusion score for nodes, edges
® Subject to:
® Graph validity: edges must include endpoint nodes
® Graph connectivity
® Tree structure (one incoming edge/node)
® Compression constraint (size of graph in edges)

® Features: Concept/label, frequency, depth, position,
e Span, NE?, Date?




Evaluation

® Compare to gold-standard “proxy report”
® ~ Single document summary In style of analyst’s report
® All sentences paired w/AMR

® Fully intrinsic measure:
® Subgraph overlap with AMR

® Slightly less intrinsic measure:
®* Generate Bag-of-Phrases via most frequent subspans
® Associated with graph fragments
® Compute ROUGE-1, aka word overlap




Evaluation

® Results:

e ROUGE-1: P:0.5; R: 0.4; F: 0.44
e Similar for manual AMR and automatic parse

® Topline:
® QOracle: P: 0.85; R: 0.44; F: 0.58
® Based on similar bag-of-phrase generation from gold AMR




Summary

® |nteresting strategy based on semantic represent’n
® Builds on graph structure over deep model
® Promising strategy

®* Limitations:
® Single-document
® Does extension to multi-doc make sense?
® |iteral matching:
® Reference, lexical content
® (Generation




Review Summaries
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Review Summary
Dimensions

® Use purpose: Product selection, comparison

® Audience: Ordinary people/customers

® Derivation (extactive vs abstractive): Extractive+
® (Coverage (generic vs focused): Aspect-oriented
® Units (single vs multi): Multi-document

® Reduction: Varies

° ]Icnput)/Output form factors (language, genre, register,
orm

® 7?77 user reviews, less formal, pros & cons, tables, etc




Sentiment Summarization
® (Classic approach: (Hu and Liu, 2004)

® Summarization of product reviews (e.g. Amazon)
® |dentify product features mentioned in reviews
® |dentify polarity of sentences about those features

® [For each product,

® For each feature,
® For each polarity: provide illustrative examples

- . —



Example Summary

® Feature: picture
® Positive: 12
® OQOverall this is a good camera with a really good picture clarity.
® The pictures are absolutely amazing - the camera captures the
minutest of details.
e After nearly 800 pictures | have found that this camera takes
incredible pictures.

® Negative: 2
® The pictures come out hazy if your hands shake even for a
moment during the entire process of taking a picture.
®* Focusing on a display rack about 20 feet away in a brightly lit
room during day time, pictures produced by this camera were
blurry and in a shade of orange.




Learning Sentiment
Summarization

e (Classic approach is heuristic:
¢ May not scale, etc.

® What do users want?

e Which example sentences should be selected?

® Strongest sentiment?

® Most diverse sentiments?

® Broadest feature coverage?




Review Summarization
Factors

® Posed as optimizing score for given length summary
® Using a sentence extractive strategy

® Key factors:
® Sentence sentiment score

e Sentiment mismatch: b/t summary and product rating

® Diversity:
® Measure of how well diff’t “aspects” of product covered
* Related to both quality of coverage, importance of aspect




Review Summarization
Models |

e Sentiment Match (SM): Neg(Mismatch)
® Prefer summaries w/sentiment matching product

® |ssue?
® Neutral rating = neutral summary sentences

® Approach: Force system to select stronger sents first




Review Summarization
Models ||

e Sentiment Match + Aspect Coverage (SMAQC):
® | inear combination of:
® Sentiment intensity, mismatch, & diversity

® |ssue?
® Optimizes overall sentiment match, but not per-aspect




Review Summarization
Models |1

e Sentiment-Aspect Match (SAM):

® Maximize coverage of aspects
® *consistent® with per-aspect sentiment

® Computed using probabilistic model

® Minimize KL-divergence b/t summary, orig documents




Human Evaluation

Pairwise preference tests for different summaries
e Side-by-side, along with overall product rating
® Judged: No pref, Strongly — Weakly prefer A/B

Also collected comments that justify rating

Usually some preference, but not significant
® Except between SAM (highest) and SMAC (lowest)

Do users care at all?
e Yes!! SMAC significantly better than LEAD baseline
o (70% vs 25%)




Qualitative Comments

Preferred:
® Summaries with list (pro vs con)

Disliked:

® Summary sentences w/o sentiment

® Non-specific sentences

® |nconsistency b/t overall rating and summary

Preferences differed depending on overall rating

® Prefer SMAC for neutral vs SAM for extremes
® (SAM excludes low polarity sentences)

el —




Conclusions

e Ultimately, trained meta-classifier to pick model
® |mproved prediction of user preferences

®* Similarities and contrasts w/TAC:
® Similarities:
® Diversity ~ Non-redundancy
® Product aspects ~ Topic aspects: coverage, importance
e Differences:
e Strongly task/user oriented
® Sentiment focused (overall, per-sentence)
® Presentation preference: lists vs narratives

el —




Speech Summarization

—



Speech Summary
Applications

* Why summarize speech?
® Meeting summarization
® | ecture summarization
® \oicemail summarization

® Broadcast news

® Debates, etc....




Speech and Text
Summarization

® Commonalities:
® Require key content selection

® |inguistic cues: lexical, syntactic, discourse structure

® Alternative strategies: extractive, abstractive




Speech vs Text

® Challenges of speech (summarization):
® Recognition (and ASR errors)
® Downstream NLP processing issues, errors
Segmentation: speaker, story, sentence
Channel issues (anchor vs remote)
Disfluencies
Overlaps
“Lower information density”: off-talk, chitchat, etc
Generation: text? Speech? Resynthesis?
Other text cues: capitalization, paragraphs, etc

® New information: audio signal, prosody, dialog structure




Text vs. Speech Summarization (NEWS)

Speech Signal

Speech Channels
- phone, remote satellite, statign

Error-free Text . Transcripts ,
Transcript- Manua - ASR, Close Captioned

Many Speakers
- speaking styles

Lexical Features| | | some Lexical Features

Segmentation Story presentation Structure
-sentences style -Anchor, Reporter Interactiof

Prosodic Features
NLP tools -pitch, energy, duratiof

—

Commercials, Weather Report

Hirschberg, 2006



Current Approaches

® Predominantly extractive

e Significant focus on compression
o Why?
® Fluency: raw speech is often messy
® Speed: speech is (relatively) slow, if using playback

® |ntegration of speech features




Current Data

® Speech summary data:
® Broadcast news

® |[ectures

® Meetings

® Talk shows

® (Conversations (Switchboard, Callhome)

® \oicemalil




Common Strategies

® Basically, do ASR and treat like text
® Unsupervised approaches:
® Tf-idf cosine; LSA; MMR

e (Classification-based approaches:

® Features include:
® Sentence position, sentence length, sentence score/weight
® Discourse & local context features

®* Modeling approaches:
e SVMs, logistic regression, CRFs, etc >




What about “Speech”?

¢ Automatic sentence segmentation
® Disfluency tagging, filtering

® Speaker-related features:
® Speaker role (e.g. anchor), proportion of speech

e ASR confidence scores:
® |[ntuition: use more reliable content

® Prosody:
® Pitch, intensity, speaking rate
® Can indicate




What about “Speech”?

¢ Automatic sentence segmentation
® Disfluency tagging, filtering

® Speaker-related features:
® Speaker role (e.g. anchor), proportion of speech

e ASR confidence scores:
® |[ntuition: use more reliable content

® Prosody:
® Pitch, intensity, speaking rate
® Can indicate: emphasis, new topic, new information




Speech-focused
Summarization

® [ntuition:
® How something is said is as important as what is said

® Hypothesis:

® Speakers use pitch, intensity, speaking rate to mark
important information

® Test:
® Can we do speech summarization without speech
transcription?

® At least competitively with ASR
e Jauhar, Chen, and Metze 2013; Maskey & Hirschberg, ‘05,06




Approach

® Maskey & Hirschberg, 2006

® Data: Broadcast News (e.g. CNN)

® Single-document summarization
® Has sentence, turn, topic annotation

® Bayesian Network model here:
e | ater HMM model:
® Summary vs non-summary states




Approach

e Maskey & Hirschberg, 2006

e Data: Broadcast News (e.g. CNN)

® Single-document summarization
® Has sentence, turn, topic annotation

e Bayesian Network model here:

® [ater used HMM model:
® Summary vs non-summary states

® QObservations:
® Acoustic-prosodic measures: pitch, intensity,...
e Structural features: which speaker, role, position, etc
® | exical: word information
® Discourse features: Ratio of given/new information




Results

® Acoustic, speaker results competitive w/lexical
® Combined best

All features 0.8
Lexical 0.7
Acoustic+Structural 0.68
Acoustic 0.63

Baseline 0.5




Summary

® Speech summarization:
® Builds on text based models

® Extends to
® Overcome speech-specific challenges
® Exploit speech-specific cues

® Can be highly domain/task dependent

® Highly challenging




Conclusions

® Summarization:
® Broad range of applications
® Differ across dimensions
® Delved into TAC summarization in depth

® Draws on wide range of:
e Shallow, deep NLP methods
® Machine learning models

® Many remaining challenges, opportunities




Reminders

® Final code deliverable due Sunday

® Doodle for presentation times

® Manual evaluation instructions/data out Monday




