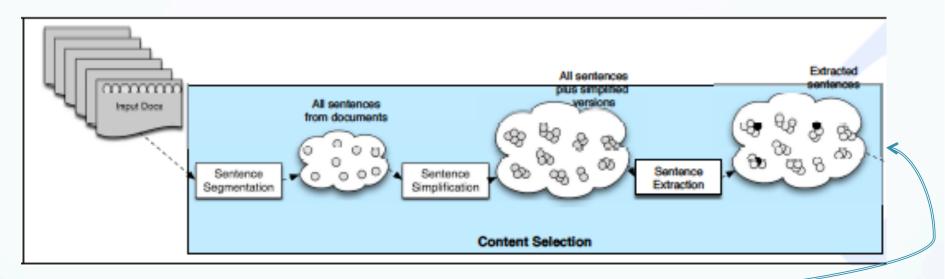
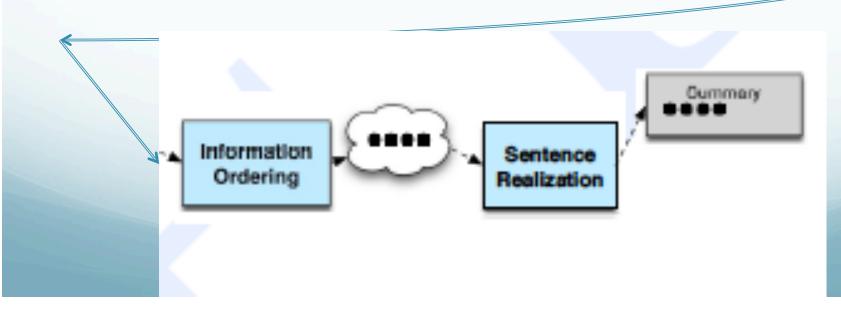
Summarization: Overview

Ling573 Systems & Applications March 30, 2017

Roadmap


Architecture of a Summarization system


Summarization and resources

Evaluation

Logistics Check-in, Deliverable #1

General Architecture

General Strategy

- Given a document (or set of documents):
 - Select the key content from the text
 - Determine the order to present that information
 - Perform clean-up or rephrasing to create coherent output
 - Evaluate the resulting summary
- Systems vary in structure, complexity, information

More specific strategy

- For single document, extractive summarization:
 - Segment the text into sentences
 - Identify the most prominent sentences
 - Pick an order to present them
 - Maybe trivial, i.e. document order
 - Do any necessary processing to improve coherence
 - Shorten sentences, fix coref, etc

Content Selection

- Goal: Identify most important/relevant information
- Common perspective:
 - View as binary classification: important vs not
 - For each unit (e.g. sentence in the extractive case)
 - Can be unsupervised or supervised
- What makes a sentence (for simplicity) extract-worthy?

Cues to Saliency

- Approaches significantly differ in terms of cues
- Word-based (unsupervised):
 - Compute a topic signature of words above threshold
 - Many different weighting schemes: tf, tf*idf, LLR, etc.
 - Select content/sentences with highest weight
- Discourse-based:
 - Discourse saliency → extract-worthiness
- Multi-feature supervised:
 - Cues include position, cue phrases, word salience, ...
 - Training data?

More Complex Settings

- Multi-document case:
 - Key issue: redundancy
 - General idea:
 - Add salient content that is least similar to that already there
- Topic-/query-focused:
 - Ensure salient content related to topic/query
 - Prefer content more similar to topic
 - Alternatively, when given specific question types,
 - Apply more Q/A information extraction oriented approach

Information Ordering

- Goal: Determine presentation order for salient content
- Relatively trivial for single document extractive case:
 - Just retain original document order of extracted sentences
- Multi-document case more challenging: Why?
 - Factors:
 - Story chronological order insufficient alone
 - Discourse coherence and cohesion
 - Create discourse relations
 - Maintain cohesion among sentences, entities
- Template approaches also used with strong query

Content Realization

- Goal: Create a fluent, readable, compact output
- Abstractive approaches range from templates to full NLG
- Extractive approaches focus on:
 - Sentence simplification/compression:
 - Manipulation parse tree to remove unneeded info
 - Rule-based, machine-learned
 - Reference presentation and ordering:
 - Based on saliency hierarchy of mentions

Examples

- Compression:
 - When it arrives sometime next year in new TV sets, the V-chip will give parents a new and potentially revolutionary device to block out programs they don't want their children to see.

Examples

Compression:

 When it arrives sometime next year in new TV sets, the V-chip will give parents a new and potentially revolutionary device to block out programs they don't want their children to see.

Coreference:

 Advisers do not blame O'Neill, but they recognize a shakeup would help indicate Bush was working to improve matters. U.S. President George W. Bush pushed out Treasury Secretary Paul O'Neill and ...

Examples

- Compression:
 - When it arrives sometime next year in new TV sets, the V-chip will give parents a new and potentially revolutionary device to block out programs they don't want their children to see.
- Coreference:
 - Advisers do not blame Treasury Secretary Paul
 O'Neill, but they recognize a shakeup would help
 indicate U.S. President George W. Bush was working
 to improve matters. Bush pushed out O'Neill and ...

Our Task

• TAC 2009/10/11 Shared Task

- Multi-document summarization
 - Newswire text
 - "Guided"
 - Aka topic-oriented
 - ROUGE as primary evaluation metric

Systems & Resources

- System development requires resources
 - Especially true of data-driven machine learning
- Summarization resources:
 - Sets of document(s) and summaries, info
 - Existing data sets from shared tasks
 - Manual summaries from other corpora
 - Summary websites with pointers to source
 - For technical domain, almost any paper
 - Articles require abstracts...

Component Resources

- Content selection:
 - Documents, corpora for term weighting
 - Sentence breakers
 - Semantic similarity tools (WordNet sim)
 - Coreference resolver
 - Discourse parser
 - NER, IE
 - Topic segmentation
 - Alignment tools

Component Resources

- Information ordering:
 - Temporal processing
 - Coreference resolution
 - Lexical chains
 - Topic modeling
 - (Un)Compressed sentence sets
- Content realization:
 - Parsing
 - NP chunking
 - Coreference

Dimensions of Summary Evaluation

- Summary evaluation:
 - Inherently hard:
 - Multiple manual abstracts:
 - Surprisingly little overlap; substantial assessor disagreement
 - Developed in parallel with systems/tasks
- Key concepts:
 - Text quality: readability includes sentence, discourse structure
 - Concept capture: Are key concepts covered?
 - Gold standards: model, human summaries
 - Enable comparison, automation, incorporation of specific goals
 - Purpose: Why is the summary created?
 - Intrinsic/Extrinsic evaluation

Evaluation

- Extrinsic evaluations:
 - Does the summary allow users to perform some task?
 - As well as full docs? Faster?
 - Example:
 - Time-limited fact-gathering:
 - Answer questions about news event
 - Compare with full doc, human summary, auto summary
 - Relevance assessment: relevant or not?
 - MOOC navigation: raw video vs auto-summary/index
 - Task completed faster w/summary (except expert MOOCers)
- Hard to frame in general, though

Intrinsic Evaluation

- Need basic comparison to simple, naïve approach
- Baselines:
 - Random baseline:
 - Select N random sentences
 - Leading sentences:
 - Select N leading sentences
 - For news, surprisingly hard to beat
 - (For reviews, last N sentences better.)

Intrinsic Evaluation

- Most common automatic method: ROUGE
 - "Recall-Oriented Understudy for Gisting Evaluation"
 - Inspired by BLEU (MT)
 - Computes overlap b/t auto and human summaries
 - E.g. ROUGE-2: bigram overlap

$$ROUGE2 = \frac{\sum\limits_{S \in \{\text{Re ference Summaries}\} \ bigram \in S}}{\sum\limits_{S \in \{\text{Re ference Summaries}\} \ bigram \in S}} count(bigram)}$$

Also, ROUGE-L (longest seq), ROUGE-S (skipgrams)

ROUGE

- Pros:
 - Automatic evaluation allows tuning
 - Given set of reference summaries
 - Simple measure
- Cons:
 - Even human summaries highly variable, disagreement
 - Poor handling of coherence
 - Okay for extractive, highly problematic for abstractive

Deliverable #1

- Goals:
 - Set up for remainder of course
 - Form teams
 - Set up repository for version control
 - GIT or SVN
 - Create report outline
 - ACL style files
- Mail Glenn (gslayden@uw) with team, repository plan/info
 - By weekend!!
 - Can get repository/extra space on cluster