Content Selection: Supervision & Discourse

Ling573 Systems & Applications April 11, 2017

Roadmap

- Content selection
 - Supervised content selection
 - Analysis & Regression with rich features
 - "CLASSY": HMM methods
 - Discourse structure
 - Models of discourse structure
 - Structure and relations for summarization

Supervised Word Selection

• RegSumm:

- Improving the Estimation of Word Importance for News Multi-Document Summarization (Hong & Nenkova, '14)
- Key ideas:
 - Supervised method for word selection
 - Diverse, rich feature set: unsupervised measures, POS, NER, position, etc
 - Identification of common "important" words via side corpus of news articles and human summaries

Basic Approach

- Learn keyword importance
 - Contrasts with unsupervised selection, learning sentences
 - Train regression over large number of possible features
 - Supervision over *words*
 - Did document word appear in summary or not?
 - Greedy sentence selection:
 - Highest scoring sentences: average word weight
 - Do not add if >= 0.5 cosine similarity w/any curr sents

Features I

- Unsupervised measures:
 - Used as binary features given some threshold
 - Word probability: count(w)/N
 - Computed over input cluster
 - Log likelihood ratio: Gigaword as background corpus
 - Markov Random Walk (MRW):
 - Graphical model approach similar to LexRank
 - Nodes: words
 - Edges: # syntactic dependencies b/t wds in sentences
 - Weights via PageRank algorithm

Features II

- "Global" word importance:
 - Question: Are there words which are intrinsically likely to show up in (news) summaries?
 - Approach:
 - Build language models on NYT corpus of articles+summs
 - One model on articles, one model on summaries
 - Measures: $Pr_A(w)$, $Pr_A(w)$ · $Pr_G(w)$, $Pr_A(w)/Pr_G(w)$
 - $KL(A||G) = Pr_A(w)*ln (Pr_A(w)/Pr_G(w))$
 - $KL(G||A) = Pr_G(w)*In (Pr_G(w)/Pr_A(w))$
 - Binary features: top-k or bottom-k features

Features III

- Adaptations of common features:
 - Word position as proportion of document [0,1]
 - Earliest first, latest last, average, average first
 - Word type: POS, NER
 - Emphasizes NNS, NN, capitalization; ORG, PERS, LOC
 - MPQA and LIWC features:
 - MPQA: sentiment, subjectivity terms
 - Strong sentiment likely or not? NOT
 - LIWC: words for 64 categories: +: death, anger, money
 - Neg: pron, neg, fn words, swear, adverbs, etc

Assessment: Words

- Select N highest ranked keywords via regression
- Compute F-measure over words in summaries
 - G_i: i = # of summaries in which word appears

G_i	#words	Prob	LLR	MRW	REGBASIC	REGSUM
G_1	80	43.6	37.9	38.9	39.9	45.7
G_1	100	44.3	38.7	39.2	41.0	46.5
G_1	120	44.6	38.5	39.2	40.9	46.4
G_2	30	47.8	44.0	42.4	47.4	50.2
G_2	35	47.1	43.3	42.1	47.0	49.5
G_2	40	46.5	42.4	41.8	46.4	49.2

Assessment: Summaries

Compare summarization w/ROUGE-1,2,4

	System	R-1	R-2	R-4
	Prob	35.14	8.17	1.06
Basic	LLR	34.60	7.56	0.83
Systems	MRW	35.78	8.15	0.99
	REGBASIC	37.56	9.28	1.49
	KL	37.97	8.53	1.26
	PEER-65	37.62	8.96	1.51
The Art	SUBMOD	39.18	9.35	1.39
Systems	DPP	39.79	9.62	1.57
	REGSUM	38.57	9.75	1.60

CLASSY

- "Clustering, Linguistics and Statistics for Summarization Yield"
 - Conroy et al. 2000-2011
- Highlights:
 - High performing system
 - Often rank 1 in DUC/TAC, commonly used comparison
 - Topic signature-type system (LLR)
 - HMM-based content selection
 - Redundancy handling

Using LLR for Weighting

- Compute weight for all cluster terms
 - weight(w_i) = 1 if -2log λ > 10, 0 o.w.
- Use that to compute sentence weights

$$weight(s_i) = \sum_{w \in s_i} \frac{weight(w)}{|\{w | w \in s_i\}|}$$

- How do we use the weights?
 - One option: directly rank sentences for extraction
- LLR-based systems historically perform well
 - Better than tf*idf generally

HMM Sentence Selection

- CLASSY strategy: Use LLR as feature in HMM
- How does HMM map to summarization?
 - Key idea:
 - Two classes of states: summary, non-summary
 - Feature(s)?: log(#sig+1) (tried: length, position,..)
 - Lower cased, white-space tokenized (a-z), stopped
 - Topology:

Select sentences with highest posterior (in "summary")

Matrix-based Selection

- Redundancy minimizing selection
- Create term x sentence matrix
 - If term in sentence, weight is nonzero
- Loop:
 - Select highest scoring sentence
 - Based on Euclidean norm
 - Subtract those components from remaining sentences
 - Until enough sentences
- Effect: selects highly ranked but different sentences
 - Relatively insensitive to weighting schemes

Combining Approaches

- Both HMM and Matrix method select sentences
- Can combine to further improve
- Approach:
 - Use HMM method to compute sentence scores
 - (e.g. rather than just weight based)
 - Incorporates context information, prior states
 - Loop:
 - Select highest scoring sentence
 - Update matrix scores
 - Exclude those with too low matrix scores
 - Until enough sentences are found

Other Linguistic Processing

- Sentence manipulation (before selection):
 - Remove uninteresting phrases based on POS tagging
 - Gerund clauses, restr. rel. appos, attrib, lead adverbs
- Coreference handling (Serif system)
 - Created coref chains initially
 - Replace all mentions with longest mention (# caps)
 - Used only for sentence selection

Outcomes

• HMM, Matrix: both effective, better combined

- Linguistic pre-processing improves
 - Best ROUGE-1,ROUGE-2 in DUC
- Coref handling improves:
 - Best ROUGE-3, ROUGE-4; 2nd ROUGE-2

Notes

- Single document, short (100 wd) summaries
 - What about multi-document? Longer?
- Structure relatively better, all contribute

- Manually labeled discourse structure, relations
 - Some automatic systems, but not perfect
 - However, better at structure than relation ID
 - Esp. implicit