Topic-Orientation & Optimization

Ling573 Systems & Applications April 18, 2017

Roadmap

- Topic-focused summarization
 - Focusing existing approaches
 - LexRank
 - CLASSY, FastSum
- Summarization with LSA
- Summarization as optimization
- Information Ordering:
 - Basic approaches
 - Variants on chronological ordering
 - Enhancing cohesion

Key Idea

- Topic-focused summarization
 - (aka "query-focused", "guided")
- Motivations:
 - Extrinsic task vs generic
 - Why are we creating this summary?
 - Viewed as complex question answering (vs factoid)
 - High variation in human summaries
 - Depending on perspective different content focused
- Idea:
 - Target response to specific question, topic in docs
 - Later TACs identify topic categories and aspects
 - E.g Natural disasters: who, what, where, when...

Query-focused LexRank

- Focus on sentences relevant to query
 - Rather than uniform jump
- How do we measure relevance?
 - Tf*idf-like measure over sentences & query
 - Compute sentence-level "idf"
 - N = # of sentences in cluster; sf_w = # of sentences with w

$$idf_{w} = \log\left(\frac{N+1}{0.5 + sf_{w}}\right)$$

$$rel(s \mid q) = \sum_{w \in q} \log(tf_{w,s} + 1) * \log(tf_{w,q} + 1) * idf_{w}$$

Updated LexRank Model

- Combines original similarity weighting w/query
 - Mixture model of query relevance, sentence similarity

$$p(s | q) = d \frac{rel(s | q)}{\sum_{z \in C} rel(z | q)} + (1 - d) \sum_{v \in C} \frac{sim(s, v)}{\sum_{z \in C} sim(z, v)} p(v | q)$$

d controls 'bias': i.e. relative weighting

Tuning & Assessment

- Parameters:
 - Similarity threshold: filters adjacency matrix
 - Question bias: Weights emphasis on question focus
- Parameter sweep:
 - Best similarity threshold: 0.14-0.2
 - As before
 - Best question bias: high: 0.8-0.95
- Question bias in LexRank can improve

Other Strategies

- Methods depend on base system design
 - All aim to incorporate similarity with query/topic
- CLASSY HMM:
 - Add question overlap feature to HMM vector
 - Log (# query tokens in sentence + 1)
 - Query tokens: tagged as noun, verb, adj, adv, or proper nouns
 - Other, more aggressive approach detrimental
- FastSum: SVM regression on sentences
 - Adds topic title frequency feature:
 - Proportion of words in sent which appear in title
- Others: Require minimum number of topic words

Overview

- Many similar strategies:
 - Features, weighting, ranking: overlap based
- Actual evaluation impact:
 - Not necessarily very large (e.g. 0.003 ROUGE)
 - But can be useful
 - Aggressive approaches can have large negative impact
 - I.e. explicitly adding NER spans

Optimization Approaches to Reducing Redundancy

- DPP: Determinantal Point Processes (Kulesza & Taskar, '12)
 - Set models balancing information importance w/diversity
- ICSISumm: Uses Integer Linear Programming frame
 - Optimizes coverage of key bigrams weighted by doc freq
- OCCAMS_V
 - Uses LSA (Latent Semantic Analysis) to weight terms
 - Sentence selection via optimization problems:
 - Budgeted maximal coverage; knapsack

ICSISumm

- Key ideas:
 - Cast summarization as optimization problem
 - Identify important "concepts" to incorporate
 - Build best such summary
 - Implemented as integer linear programming

Integer Linear Programming

- Aka ILP
- An integer linear program specifies:
 - A single linear maximization term
 - Subject to linear equality/inequality constraints
 - Involving integer valued variables

Summarization as ILP

Map summary requirements to ILP elements

Summarization as ILP

- Summary goal:
 - "best" summary
- Summary requirements:
 - Minimize redundancy
 - Within desired length

Maximization term:

$$\sum_{i} w_{i}c_{i}$$

- Implicit:
- Length constraint:

$$\sum l_j s_j < L$$

- Coverage constraint:
 - Concept covered by sent

$$\sum_{j} s_{j} o_{ij} \ge c_{i} \forall i$$

$$S_j O_{ij} \le C_i \forall i, j$$

Representing Concepts

- Concepts = Bigrams
 - Stemmed
 - No stopword-only bigrams
 - Occurring in at least 3 documents
- Weights:
 - Document frequency:
 - # of documents (from cluster) for bigram
- Selected sentences must contain >= 2 query terms

Results

After using open source solver

- 2009 results:
 - 2nd best pyramid, ROUGE-2
 - Best ROUGE-3, ROUGE-4

(Interesting sentence compression: later...)