
Investigation of the Information State
Approach to Dialog Management using

the DIPPER DME
ErikAnthony Harté

Ling 575 - Spring 2013

Project goals (original)

● Implement a Call For Fire (CFF) Dialog
System

● Experiment with Information State Update
and Dialog Move Engines

SDS Pipeline

DIPPER
● Developed by the Language Technology Group at The University

of Edinburgh and CSLI Stanford

● Toolkit for prototyping dialog systems

● Modelled closely after TrindiKit, but...
○ Simpler framework
○ Not so Prolog-y
○ Tightly coupled with OAA

● Dipper_java

● Information State Update (ISU) approach
○ Information State - captures state of dialog, beliefs, goals, etc.
○ Update Rules - manages transitions between finite states

DIPPER - Information State
 infostate(record([is:record([
 grammar:atomic,
 contact:atomic,
 input:queue(move),
 lastmoves:record([
 string:stack(word),
 act:stack(atomic),
 udr:stack(udr),
 conf:stack(atomic),
 int:list(interpretation)
]),
 int:record([
 model:stack(model),
 drs:stack(drs)
])])])).

DIPPER - Update Rules
 urule(initialisation,
 [is^grammar = '',
 empty(is^input)],
 [assign(is^contact,no),
 assign(is^listening,no),
 assign(is^grammar,'.Hotword')]).

 urule(start_eavesdropping,
 [is^contact = no,
 is^grammar = '.Hotword',
 is^listening = no,
 empty(is^input)],
 [solve(recognize(is^grammar,30,[Move|_]),[enqueue(is^input,Move),
assign(is^listening,no)]),
 assign(is^listening,yes)]).

OAA - Open Agent Architecture
● Developed by SRI
● Framework for building communities of heterogenous software agents
● ICL - InterAgentCommunication Language (Prolog based)
● Agents communicate with each other through a Facilitator via solvables
● Solvables announce and request agent capabilities within the community

Example: A mail service agent might register these solvables:
 [solvable(send(mail, ToPerson, Msg), [callback(send_mail)], []),
 solvable(last_message(MessageNum),
 [type(data), single_value(true)],
 [write(true)]),
 solvable(get_message(MessageNum, Msg), [callback(get_mail)], [])
]).

OAA Monitor

The Project: Implement CFF Dialog

Dialog Move Engine
● Information state
● Update rules

OAA Agents
● Natural Language Understanding
● Language Generation

Limited CFF Dialog

3 Phases
● Indentification
● Targeting
● Authentication

If time allows...
● Grounding
● Correction

Example:
U: "B456, this is A123, over."
S: "A123, this is B456, out."
U: "Target is truck at location Grid12, over."
S: "Roger. Target truck at location Grid12, out."

Finite State Machine (~20 states)

CFF Information State

CFF Update Rules (~25 rules)

Implementation

Conclusions
● ISU interesting and very flexible - supports a wide variety of dialog

management approaches
● OAA architecture allows for independent modules to be built
● Toolkits allow relatively easy prototyping, and (with effort) the ability to

build usable systems

Issues
● Difficult to use, especially TrindiKit
● Prolog knowledge essential
● Little documentation, particularly DIPPER. As well as lack of current

support.
● Difficult to manage rules and state with complicated dialogs

References
1. DIPPER: Description and Formalisation of an Information-State Update Dialogue System

Architecture (2003). Johan Bos , Ewan Klein , Oliver Lemon , Tetsushi Oka. In 4th SIGdial
Workshop on Discourse and Dialogue

2. Staffan Larsson and David Traum (2000): Information state and dialogue management in the
TRINDI Dialogue Move Engine Toolkit. In Natural Language Engineering Special Issue on Best
Practice in Spoken Language Dialogue Systems Engineering, Cambridge University Press, U.K.
(pp. 323-340, 18 pages)

3. David Traum and Staffan Larsson (2003): The Information State Approach to Dialogue
Management. To appear in Smith and Kuppevelt (eds.): Current and New Directions in
Discourse & Dialogue, Kluwer Academic Publishers. (pp. 325-353, 28 pages)

4. Bohus, Dan & Alexander I. Rudnicky (2009), "The RavenClaw dialog management framework:
Architecture and systems", Computer Speech & Language

