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Project goals (original)

● Implement a Call For Fire (CFF) Dialog 
System

● Experiment with Information State Update 
and Dialog Move Engines



SDS Pipeline



DIPPER
● Developed by the Language Technology Group at The University 

of Edinburgh and CSLI Stanford 

● Toolkit for prototyping dialog systems

● Modelled closely after TrindiKit, but... 
○ Simpler framework
○ Not so Prolog-y
○ Tightly coupled with OAA

● Dipper_java

● Information State Update (ISU) approach
○ Information State - captures state of dialog, beliefs, goals, etc.
○ Update Rules - manages transitions between finite states



DIPPER - Information State
 infostate(record([is:record([
                               grammar:atomic,
                               contact:atomic,
                               input:queue(move),
                               lastmoves:record([
                                                 string:stack(word),
                                                 act:stack(atomic),
                                                 udr:stack(udr),
                                                 conf:stack(atomic),
                                                 int:list(interpretation)
                                                ]),
                               int:record([
                                           model:stack(model),
                                           drs:stack(drs)
                                          ])])])).



DIPPER - Update Rules
  urule(initialisation,
        [ is^grammar = '',
          empty(is^input) ],
        [ assign(is^contact,no), 
          assign(is^listening,no),
          assign(is^grammar,'.Hotword') ]).

  urule(start_eavesdropping,
        [ is^contact = no,
          is^grammar = '.Hotword',
          is^listening = no,
          empty(is^input) ],
        [ solve(recognize(is^grammar,30,[Move|_]),[enqueue(is^input,Move),
assign(is^listening,no)]),
          assign(is^listening,yes) ]).



OAA - Open Agent Architecture
● Developed by SRI
● Framework for building communities of heterogenous software agents
● ICL - InterAgentCommunication Language (Prolog based)
● Agents communicate with each other through a Facilitator via solvables
● Solvables announce and request agent capabilities within the community

Example: A mail service agent might register these solvables:
     [solvable(send(mail, ToPerson, Msg), [callback(send_mail)], []),
       solvable(last_message(MessageNum),
                [type(data), single_value(true)],
                [write(true)]),
       solvable(get_message(MessageNum, Msg), [callback(get_mail)], [])
      ]).



OAA Monitor



The Project: Implement CFF Dialog

Dialog Move Engine
● Information state
● Update rules

OAA Agents
● Natural Language Understanding
● Language Generation



Limited CFF Dialog

3 Phases
● Indentification
● Targeting
● Authentication

If time allows...
● Grounding
● Correction

Example:
U: "B456, this is A123, over."
S: "A123, this is B456, out."
U: "Target is truck at location Grid12, over."
S: "Roger. Target truck at location Grid12, out."



Finite State Machine (~20 states)



CFF Information State



CFF Update Rules (~25 rules)



Implementation



Conclusions
● ISU interesting and very flexible - supports a wide variety of dialog 

management approaches
● OAA architecture allows for independent modules to be built
● Toolkits allow relatively easy prototyping, and (with effort) the ability to 

build usable systems 

Issues
● Difficult to use, especially TrindiKit
● Prolog knowledge essential
● Little documentation, particularly DIPPER. As well as lack of current 

support.
● Difficult to manage rules and state with complicated dialogs 
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