Components: ASR

Ling575 Spoken Dialog Systems April 17, 2013

Speech Recognition

- Applications of Speech Recognition (ASR)
 - Dictation
 - Telephone-based Information (directions, air travel, banking, etc)
 - Hands-free (in car)
 - Speaker Identification
 - Language Identification
 - Second language ('L2') (accent reduction)
 - Audio archive searching

LVCSR

- Large Vocabulary Continuous Speech Recognition
- ~20,000-64,000 words
- Speaker independent (vs. speaker-dependent)
- Continuous speech (vs isolated-word)

Current error rates

Ballpark numbers; exact numbers depend very much on the specific corpus

Task	Vocabulary	Error Rate%
Digits	11	0.5
WSJ read speech	5K	3
WSJ read speech	20K	3
Broadcast news	64,000+	10
Conversational Telephone	64,000+	20

HSR versus ASR

Task	Vocab	ASR	Hum SR
Continuous digits	11	.5	.009
WSJ 1995 clean	5K	3	0.9
WSJ 1995 w/noise	5K	9	1.1
SWBD 2004	65K	20	4

Conclusions:

- Machines about 5 times worse than humans
- Gap increases with noisy speech
- These numbers are rough, take with grain of salt

Why is conversational speech harder?

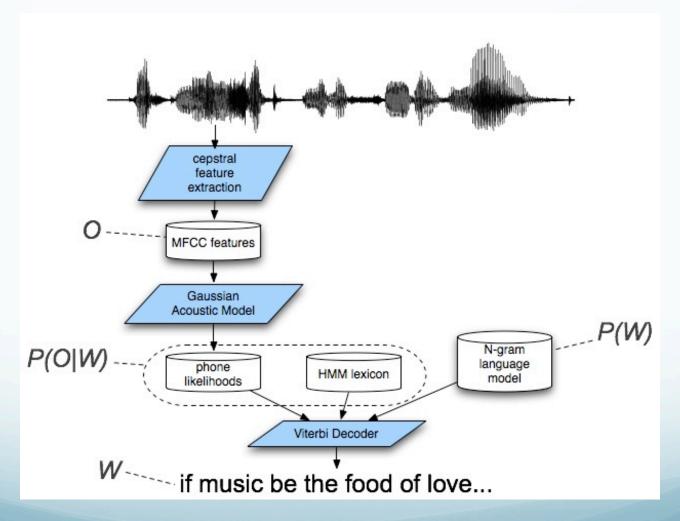
A piece of an utterance without context

• The same utterance with more context

LVCSR Design Intuition

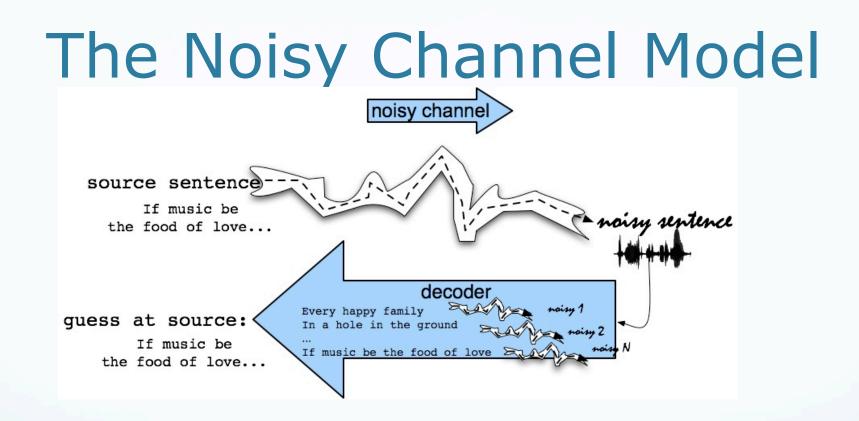
- Build a statistical model of the speech-to-words process
- Collect lots and lots of speech, and transcribe all the words.
- Train the model on the labeled speech
- Paradigm: Supervised Machine Learning + Search

Speech Recognition Architecture



Speech and Language Processing Jurafsky and Martin

4/17/13



- Search through space of all possible sentences.
- Pick the one that is most probable given the waveform.

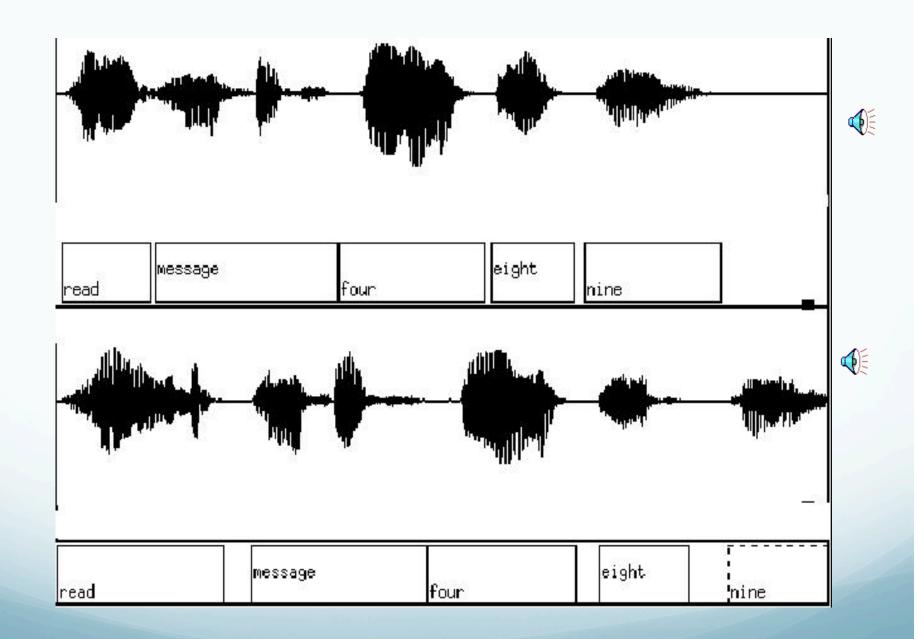
Decomposing Speech Recognition

- Q1: What speech sounds were uttered?
 - Human languages: 40-50 phones
 - Basic sound units: b, m, k, ax, ey, ...(arpabet)
 - Distinctions categorical to speakers
 - Acoustically continuous
 - Part of knowledge of language
 - Build per-language inventory
 - Could we learn these?

Decomposing Speech Recognition

- Q2: What words produced these sounds?
 - Look up sound sequences in dictionary
 - Problem 1: Homophones
 - Two words, same sounds: too, two
 - Problem 2: Segmentation
 - No "space" between words in continuous speech
 - "I scream"/"ice cream", "Wreck a nice beach"/"Recognize speech"

Q3: What meaning produced these words?
NLP (But that's not all!)



The Noisy Channel Model (II)

- What is the most likely sentence out of all sentences in the language L given some acoustic input O?
- Treat acoustic input O as sequence of individual observations
 - $O = O_1, O_2, O_3, \dots, O_t$
- Define a sentence as a sequence of words:
 - $W = W_1, W_2, W_3, ..., W_n$

Noisy Channel Model (III)

• Probabilistic implication: Pick the highest prob S = W:

$$\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(W \mid O)$$

• We can use Bayes rule to rewrite this:

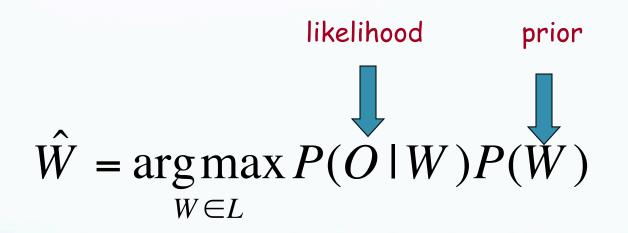
$$\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} \frac{P(O | W) P(W)}{P(O)}$$

• Since denominator is the same for each candidate sentence W, we can ignore it for the argmax:

$$\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(O | W) P(W)$$

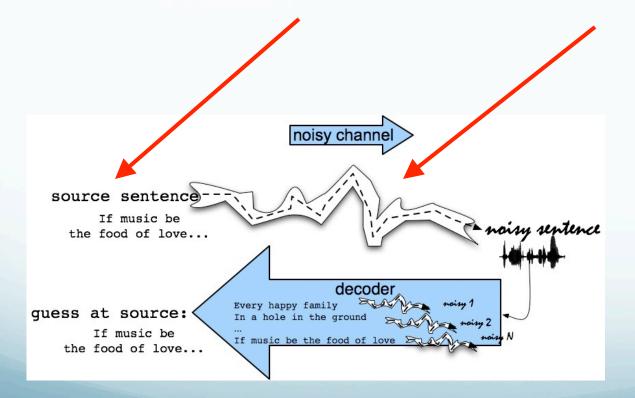
Speech and Language Processing Jurafsky and Martin

Noisy channel model

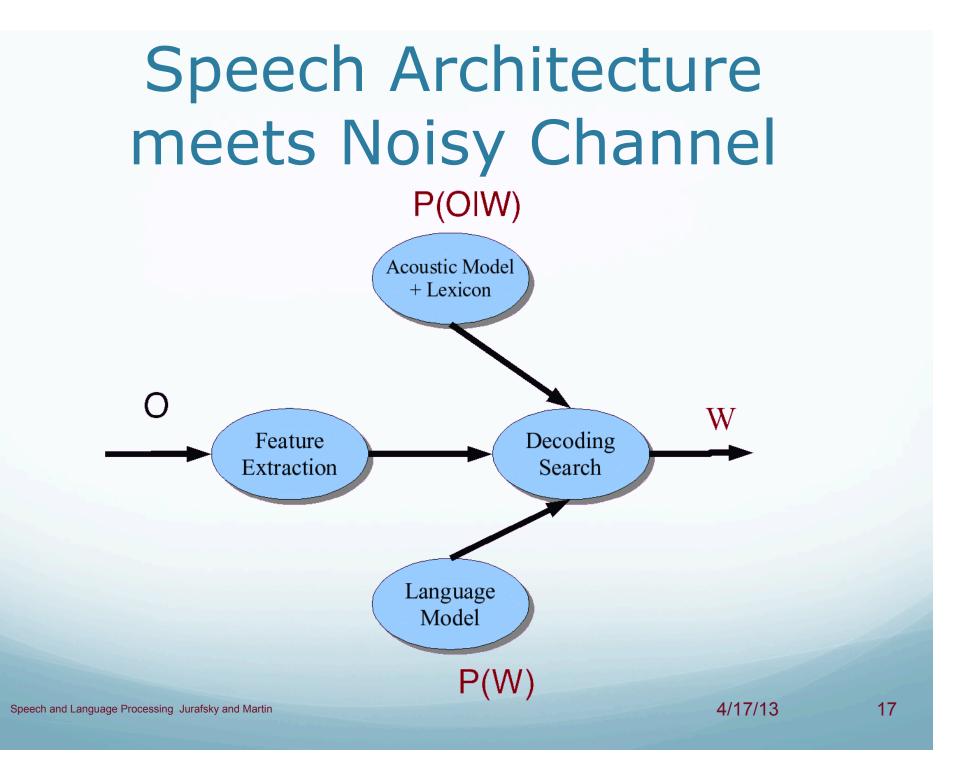


The noisy channel model

• Ignoring the denominator leaves us with two factors: P(Source) and P(Signal|Source)



Speech and Language Processing Jurafsky and Martin



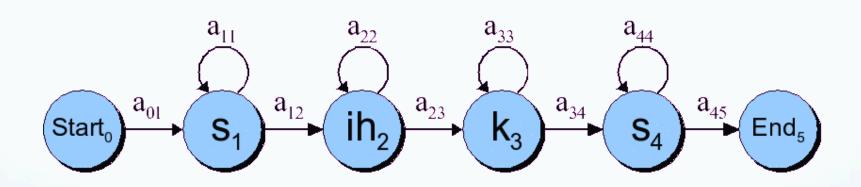
ASR Components

- Lexicons and Pronunciation:
 - Hidden Markov Models
- Feature extraction
- Acoustic Modeling
- Decoding
- Language Modeling:
 - Ngram Models

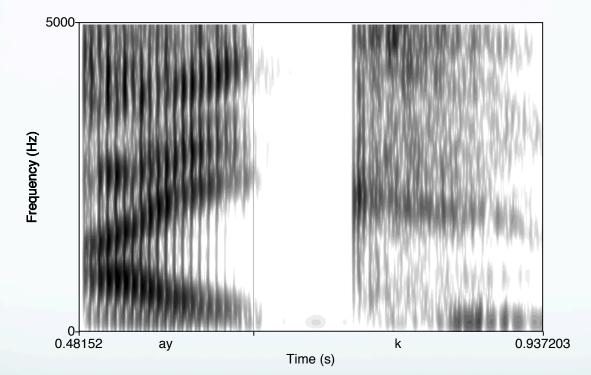
Lexicon

- A list of words
- Each one with a pronunciation in terms of phones
- We get these from on-line pronunciation dictionary
- CMU dictionary: 127K words
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- We'll represent the lexicon as an HMM

HMMs for speech: the word "six"



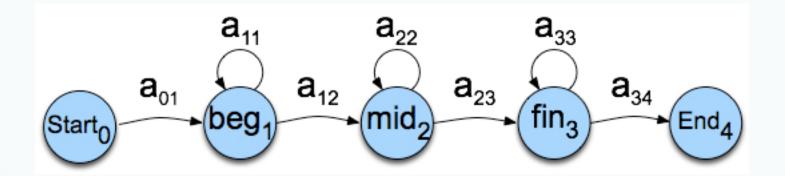
Phones are not homogeneous!



4/17/13

21

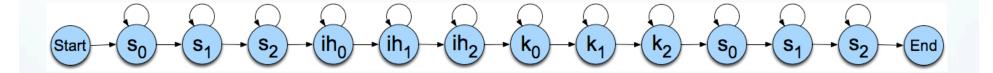
Each phone has 3 subphones



22

HMM word model for "six"

• Resulting model with subphones



23

HMMs for speech

$$Q = q_1 q_2 \dots q_N$$
$$A = a_{01} a_{02} \dots a_{n1} \dots a_{nn}$$

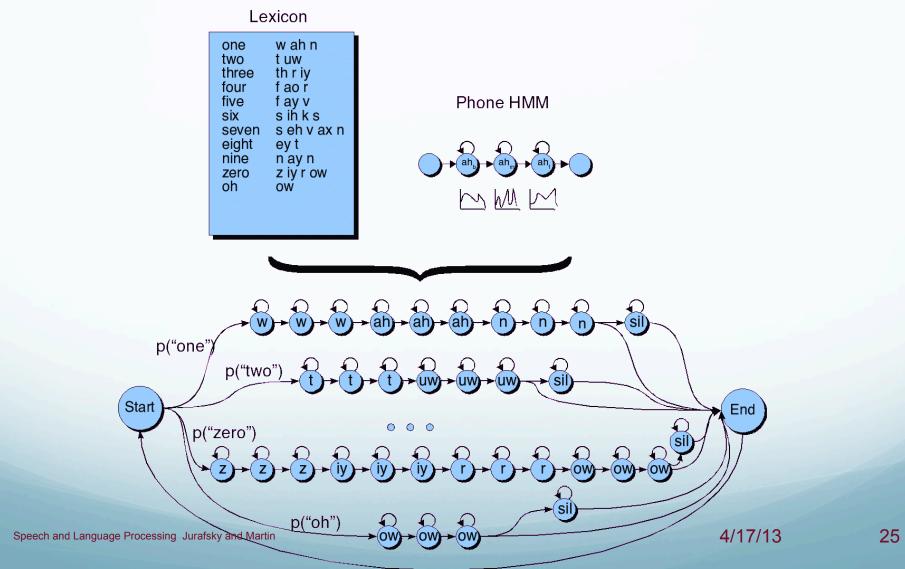
$$B = b_i(o_t)$$

a set of states corresponding to subphones

a transition probability matrix A, each a_{ij} representing the probability for each subphone of taking a self-loop or going to the next subphone. Together, Q and A implement a pronunciation lexicon, an HMM state graph structure for each word that the system is capable of recognizing.

A set of observation likelihoods:, also called emission probabilities, each expressing the probability of a cepstral feature vector (observation o_t) being generated from subphone state *i*.

HMM for the digit recognition task



Typical MFCC features

- Window size: 25ms
- Window shift: 10ms
- Pre-emphasis coefficient: 0.97
- MFCC:
 - 12 MFCC (mel frequency cepstral coefficients)
 - 1 energy feature
 - 12 delta MFCC features
 - 12 double-delta MFCC features
 - 1 delta energy feature
 - 1 double-delta energy feature

Total 39-dimensional features

26

Why is MFCC so popular?

- Efficient to compute
- Incorporates a perceptual Mel frequency scale
- Separates the source and filter
 - Fits well with HMM modelling

Decoding

• In principle:

$$\widehat{W} = \underset{W \in \mathscr{L}}{\operatorname{argmax}} \ \widetilde{P(O|W)} \ \widetilde{P(W)}$$

• In practice:

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} P(O|W) P(W)^{LMSF}$

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} P(O|W) P(W)^{LMSF} WIP^{N}$

 $\hat{W} = \underset{W \in \mathscr{L}}{\operatorname{argmax}} \log P(O|W) + LMSF \times \log P(W) + N \times \log WIP$

Speech and Language Processing Jurafsky and Martin

28

Why is ASR decoding hard?

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

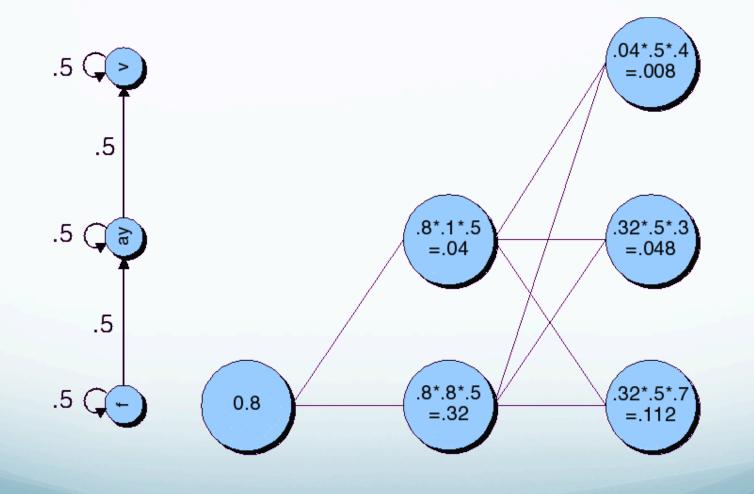
The Evaluation (forward) problem for speech

- The observation sequence O is a series of MFCC vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate P(O|W)
- Intuition: how likely is the input to have been generated by just that word string W

Evaluation for speech: Summing over all different paths!

- fay ay ay ay v v v
- ffay ay ay ay v v v
- ffffay ay ay ay v
- ffay ay ay ay ay ay v
- f f ay ay ay ay ay ay ay ay v
- ffayvvvvvv

Viterbi trellis for "five"



Speech and Language Processing Jurafsky and Martin

4/17/13

Viterbi trellis for "five"

V	0)	0)	0.	008	0.0	072	0.0	00672	0.	00403	0.	00188	0.0	0161	0.0	00667	0.00	00493	
AY	0)	0.0)4	0.	048	0.0)448	0.	0.0269		0.0125		0.00538		0.00167		0.000428		8.78e-05	
F	0.	8	0.3	32	0.	112	0.0)224	0.0	0.00448		0.000896 0.000179		4.48e-05		1.12e-05		2.8e-06			
Time	1		2	2 3 4 5		5	6 7		8		9		10								
	f 0).8	f ℓ).8	f	0.7	f	0.4	f	0.4	f	0.4	f	0.4	f	0.5	f	0.5	f	0.5	
	ay 0).1	ay ().1	ay	0.3	ay	0.8	ay	0.8	ay	0.8	ay	0.8	ay	0.6	ay	0.5	ay	0.4	
B	v 0).6	v C).6	v	0.4	v	0.3	v	0.3	v	0.3	v	0.3	v	0.6	v	0.8	v	0.9	
	p 0).4	p C).4	р	0.2	р	0.1	р	0.1	р	0.1	р	0.1	р	0.1	р	0.3	р	0.3	
	iy 0).1	iy (0.1	iy	0.3	iy	0.6	iy	0.6	iy	0.6	iy	0.6	iy	0.5	iy	0.5	iy	0.4	

33

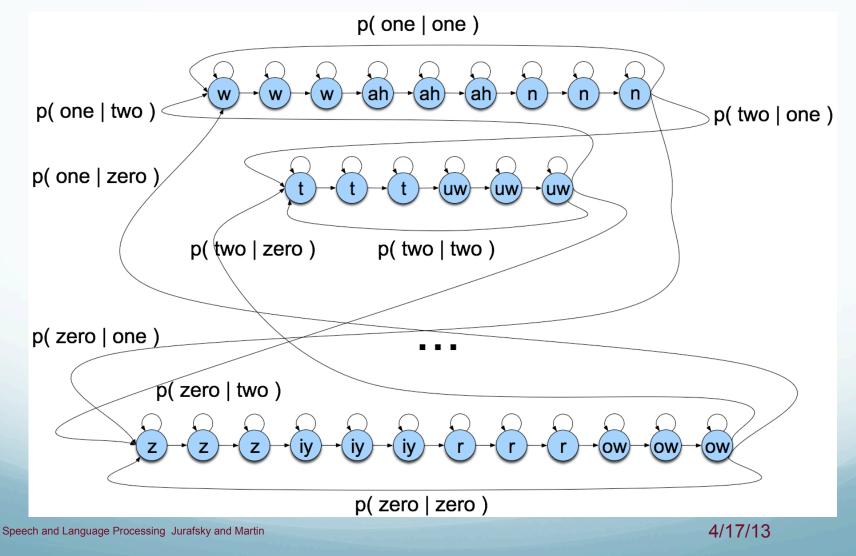
Language Model

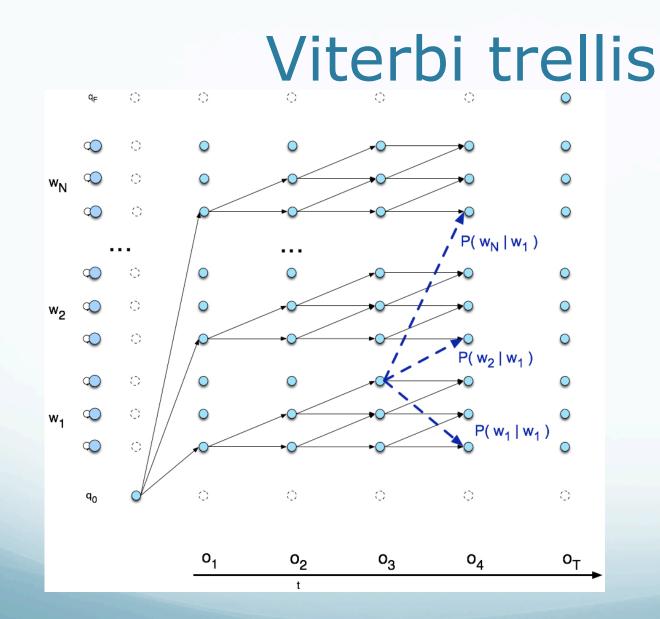
Idea: some utterances more probable

- Standard solution: "n-gram" model
 - Typically tri-gram: P(w_i|w_{i-1},w_{i-2})
 - Collect training data from large side corpus
 - Smooth with bi- & uni-grams to handle sparseness
 - Product over words in utterance:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1}, w_{k-2})$$

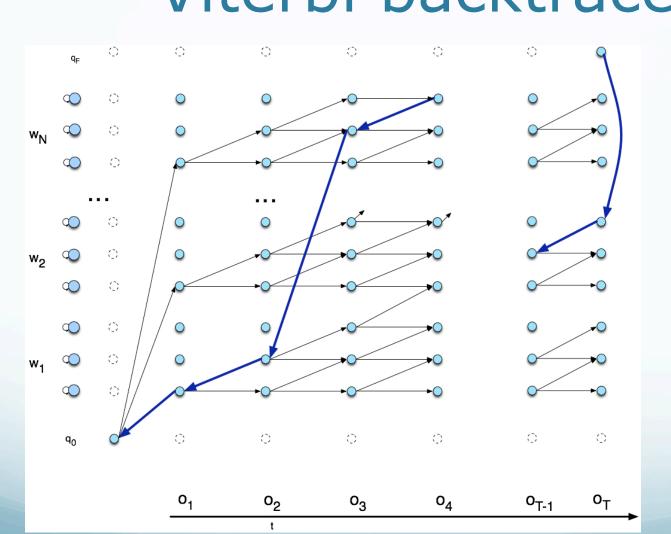
Search space with bigrams





Speech and Language Processing Jurafsky and Martin

4/17/13



Viterbi backtrace

Speech and Language Processing Jurafsky and Martin

4/17/13

Detecting Phones

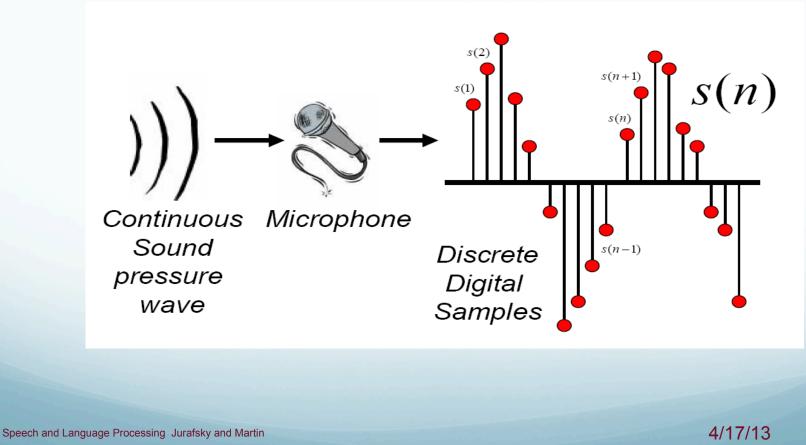
• Two stages

- Feature extraction
 - Basically a slice of a spectrogram
- Phone classification
 - Using GMM classifier

38

Discrete Representation of Signal

• Represent continuous signal into discrete form.



Thanks to Bryan Pellom for this slide

Digitizing the signal (A-D)

Sampling:

- measuring amplitude of signal at time t
- 16,000 Hz (samples/sec) Microphone ("Wideband"):
- 8,000 Hz (samples/sec) Telephone
- Why?
 - Need at least 2 samples per cycle
 - max measurable frequency is half sampling rate
 - Human speech < 10,000 Hz, so need max 20K
 - Telephone filtered at 4K, so 8K is enough

Digitizing Speech (II)

Quantization

- Representing real value of each amplitude as integer
- 8-bit (-128 to 127) or 16-bit (-32768 to 32767)

40 byte

header

Formats:

- 16 bit PCM
- 8 bit mu-law; log compression
- LSB (Intel) vs. MSB (Sun, Apple)
- Headers:
 - Raw (no header)
 - Microsoft wav
 - Sun .au

MFCC: Mel-Frequency Cepstral Coefficients

