Natural Language
Understanding

Ling57/5
Spoken Dialog Systems
April 17, 2013

Natural Language
Understanding

® Generally:

® (Given a string of words representing a natural language
utterance, produce a meaning representation

Natural Language
Understanding

® Generally:

® (Given a string of words representing a natural language
utterance, produce a meaning representation

® For well-formed natural language text (see ling5/71),

e Full parsing with a probabilistic context-free grammar
* Augmented with semantic attachments in FOPC
® Producing a general lambda calculus representation

Natural Language
Understanding

® Generally:

® (Given a string of words representing a natural language
utterance, produce a meaning representation

® For well-formed natural language text (see ling5/71),

e Full parsing with a probabilistic context-free grammar
* Augmented with semantic attachments in FOPC
® Producing a general lambda calculus representation

* What about spoken dialog systems?

NLU for SDS

* Few SDS fully exploit this approach

NLU for SDS

* Few SDS fully exploit this approach
* Why not?

NLU for SDS

®* Few SDS fully exploit this approach

* Why not?
® Examples of travel air speech input (due to A. Black)
® Eh, | wanna go, wanna go to Boston tomorrow

® |f its not too much trouble |I'd be very grateful if one

might be able to aid me in arranging my travel
arrangements to Boston, Logan airport, at sometime

tomorrow morning, thank you.

® Boston, tomorrow

- -

NLU for SDS

® Analyzing speech vs text

—

NLU for SDS

® Analyzing speech vs text
e Utterances:

* ill-formed, disfluent, fragmentary, desultory, rambling
e Vs well-formed

NLU for SDS

® Analyzing speech vs text
e Utterances:

* ill-formed, disfluent, fragmentary, desultory, rambling
® Vs well-formed

® Domain:

® Restricted, constrains interpretation
® Vs, unrestricted

NLU for SDS

® Analyzing speech vs text
e Utterances:

* ill-formed, disfluent, fragmentary, desultory, rambling
® Vs well-formed
® Domain:
® Restricted, constrains interpretation
® Vs, unrestricted
® |nterpretation:

® Need specific pieces of data
e Vs, full, complete representation

NLU for SDS

® Analyzing speech vs text
e Utterances:

* ill-formed, disfluent, fragmentary, desultory, rambling
® \/s well-formed

® Domain:

® Restricted, constrains interpretation
® Vs, unrestricted

® |nterpretation:

®* Need specific pieces of data
e Vs, full, complete representation

® Speech recognition:
® Error-prone, perfect full analysis difficult to obtain

NLU for Spoken Dialog

e Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

® Shallow form of NLU

NLU for Spoken Dialog

® Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

® Shallow form of NLU

® Goal:
® Given a spoken utterance, assign to class c, in finite set C

NLU for Spoken Dialog

® Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

® Shallow form of NLU

® Goal:
® Given a spoken utterance, assign to class c, in finite set C

® Banking Example:
® Open prompt: "How may I direct your call?”’

NLU for Spoken Dialog

® Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)
e Shallow form of NLU
® Goal:
® Given a spoken utterance, assign to class c, in finite set C
® Banking Example:
® Open prompt: "How may | direct your call?”’
® Responses: may | have consumer lending?,

NLU for Spoken Dialog

® Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)
e Shallow form of NLU
® Goal:
® Given a spoken utterance, assign to class c, in finite set C
® Banking Example:
® Open prompt: "How may I direct your call?”’

® Responses: may | have consumer lending?,
e |'d like my checking account balance, or

NLU for Spoken Dialog

e (Call routing (aka call classification):
® (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)
e Shallow form of NLU
® Goal:
® Given a spoken utterance, assign to class c, in finite set C
® Banking Example:
® Open prompt: "How may | direct your call?”’

® Responses: may | have consumer lending?,
e |'d like my checking account balance, or

® "ah I'm calling 'cuz ah a friend gave me this number and ah she
told me ah with this number | can buy some cars or whatever but
she didn't know how to explain it to me so | just called you you
know to get that information.”

Call Routing

® General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

Call Routing

® (General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

® Vector-based call routing:
® Model

Call Routing

® (General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

® Vector-based call routing:

® Model: Vector of word unigram, bigrams, trigrams
® Filtering:

Call Routing

® (General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

® Vector-based call routing:

® Model: Vector of word unigram, bigrams, trigrams
® Filtering: by frequency

Call Routing

® (General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

® Vector-based call routing:

® Model: Vector of word unigram, bigrams, trigrams
® Filtering: by frequency
e Exclude high frequency stopwords, low frequency rare words
* Weighting

Call Routing

® (General approach:

® Build classification model based on labeled training
data, e.g. manually routed calls

® Apply classifier to label new data

® Vector-based call routing:

® Model: Vector of word unigram, bigrams, trigrams
® Filtering: by frequency
e Exclude high frequency stopwords, low frequency rare words
* Weighting: term frequency * inverse document frequency

Call Routing

® (General approach:

e Build classification model based on labeled training data, e.g.
manually routed calls

® Apply classifier to label new data

® Vector-based call routing:
® Model: Vector of word unigram, bigrams, trigrams
® Filtering: by frequency
® [Exclude high frequency stopwords, low frequency rare words
* Weighting: term frequency * inverse document frequency
® (Dimensionality reduction by singular value decomposition)
® Compute cosine similarity for new call & training examples

Meaning Representations
for Spoken Dialog

® Typical model: Frame-slot semantics
® Majority of spoken dialog systems
® Almost all deployed spoken dialog systems

Meaning Representations
for Spoken Dialog

® Typical model: Frame-slot semantics
® Majority of spoken dialog systems
® Almost all deployed spoken dialog systems

® Frame:
® Domain-dependent information structure
e Set of attribute-value pairs
® |[nformation relevant to answering questions in domain

Natural Language
Understanding

® Most systems use frame-slot semantics
Show me morning flights from Boston to SFO on Tuesday

e SHOW:
o FLIGHTS:
®* ORIGIN:
e CITY: Boston
e DATE:
®* DAY-OF-WEEK: Tuesday
e TIME:
e PART-OF-DAY: Morning
e DEST:
e CITY:

s ———

San Francisco

Another NLU Example

® Sagae et 2009

® Utterance (speech): we are prepared to give you guys generators
for electricity downtown

* ASR (NLU input): we up apparently give you guys generators for a
letter city don town

° Frame (NLU output):

<s>.mood declarative
<s>.sem.agent kirk
<s>.sem.event deliver
<s>.sem.modal.possibility can
<s>.sem.speechact.type offer
<s>.sem.theme power-generator
<s>.sem.type event

Question

® Given an ASR output string, how can we tractably
and robustly derive a meaning representation?

Question

® Given an ASR output string, how can we tractably
and robustly derive a meaning representation?

® Many approaches:

® Shallow transformation:
® Terminal substitution

Question

® Given an ASR output string, how can we tractably
and robustly derive a meaning representation?

® Many approaches:
e Shallow transformation:
® Terminal substitution
® |ntegrated parsing and semantic analysis
® E.g. semantic grammars

Question

® Given an ASR output string, how can we tractably
and robustly derive a meaning representation?

® Many approaches:
e Shallow transformation:
® Terminal substitution
® |ntegrated parsing and semantic analysis
® E.g. semantic grammars

® (Classification or sequence labeling approaches
e HMM-based, MaxEnt-based

Grammars

® Formal specification of strings in a language

e A 4-tuple:
® A set of terminal symbols: 2
® A set of non-terminal symbols: N
® A set of productions P: of the form A -> «
e A designated start symbol S

® |n regular grammars:
® Ais anon-terminal and « is of the form {N}2*

® |n context-free grammars:
e Aijsanon-terminaland o in (2 U N)*

g S -

Simple Air Travel Grammar

® LIST ->show me | Iwant | can I see|...

DEPARTTIME -> (after|around|before) HOUR| morning |
afternoon | evening

HOUR -> one|two|three...|twelve (am|pm)
FLIGHTS -> (a) flight|flights
ORIGIN -> from CITY

DESTINATION -> to CITY
CITY -> Boston | San Francisco | Denver | Washington

Shallow Semantics

® Terminal substitution
e Employed by some speech toolkits, e.g. CSLU

Shallow Semantics

¢ Terminal substitution
e Employed by some speech toolkits, e.g. CSLU

® Rules convert terminals in grammar to semantics
® |IST -> show me | I want | can I see]...

Shallow Semantics

¢ Terminal substitution
e Employed by some speech toolkits, e.g. CSLU

® Rules convert terminals in grammar to semantics

® |IST -> show me | I want | can I see]...
® e.g. show -> LIST

Shallow Semantics

® Terminal substitution
e Employed by some speech toolkits, e.g. CSLU

® Rules convert terminals in grammar to semantics

® |IST -> show me | I want | can I see]...
® e.g. show -> LIST

L see -> LIST
L I > €

° can -> €
L * Boston -> Boston

Shallow Semantics

® Terminal substitution
® Employed by some speech toolkits, e.g. CSLU

® Rules convert terminals in grammar to semantics

® LIST -> show me | I want | can I see]|...
® e.g. show -> LIST

° see -> LIST

° | > £

° can -> €

° * Boston -> Boston

® Simple, but...
e VERY limited, assumes direct correspondence

s ———

Semantic Grammars

® Domain-specific semantic analysis

Semantic Grammars

® Domain-specific semantic analysis

e Syntactic structure:

® Context-free grammars (CFGs) (typically)

® Can be parsed by standard CFG parsing algorithms
® c.g. Earley parsers or CKY

Semantic Grammars

® Domain-specific semantic analysis

e Syntactic structure:

® Context-free grammars (CFGs) (typically)

® Can be parsed by standard CFG parsing algorithms
® c.g. Earley parsers or CKY

® Semantic structure:

e Some desighated non-terminals correspond to slots
® Associate terminal values to corresponding slot

Semantic Grammars

Domain-specific semantic analysis

Syntactic structure:
® (Context-free grammars (CFGs) (typically)

® Can be parsed by standard CFG parsing algorithms
® c.g. Earley parsers or CKY

Semantic structure:
e Some designated non-terminals correspond to slots
® Associate terminal values to corresponding slot

Frames can be nested

Widely used: Phoenix NLU (CU, CMU), vxmIl grammars

—

Show me morning flights from Boston to SFO on Tuesday

® LIST -> show me | I want | e SHOW:
can I see|... e

® DEPARTTIME -> (after] e ORIGIN:
around|before) HOUR| o CITY: Boston
morning | afternoon | evening o DATE:

e DAY-OF-WEEK: Tuesda
e HOUR -> one|twol|three...] y

twelve (am|pm)

e TIME:
® FLIGHTS -> (a) flight|flights e PART-OF-DAY: Morning
* DESTINATION -> to CITY * CITY: San Francisco

® CITY -> Boston | San
Francisco | Denver |
Washington

Semantic Grammars: Issues

® |[ssues:

Semantic Grammars: Issues

® |ssues:
® (Generally manually constructed
® Can be expensive, hard to update/maintain

- -

Semantic Grammars: Issues

® |ssues:

® Generally manually constructed
® Can be expensive, hard to update/maintain

® Managing ambiguity:
® Can associate probabilities with parse & analysis
e Build rules manually, then train probabilities w/data

Semantic Grammars: Issues

® |ssues:
® Generally manually constructed
® Can be expensive, hard to update/maintain

® Managing ambiguity:
® Can associate probabilities with parse & analysis
e Build rules manually, then train probabilities w/data

® Domain- and application-specific
® Hard to port

Learning Probabilistic
Slot Filling

® Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

T —

Learning Probabilistic
Slot Filling

® Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

®* Motivation:
® |mprove robustness — fail-soft
® |mprove ambiguity handling — probabilities
® |mprove adaptation — train for new domains, apps

Learning Probabilistic
Slot Filling

® Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

®* Motivation:
® |mprove robustness — fail-soft
® |mprove ambiguity handling — probabilities
® |mprove adaptation — train for new domains, apps

® Many alternative classifier models
¢ HMM-based, MaxEnt-based

HMM-Based Slot Filling

®* Find best concept sequence C given words W

HMM-Based Slot Filling

®* Find best concept sequence C given words W
e C'=argmax P(C|W)

HMM-Based Slot Filling

®* Find best concept sequence C given words W
e C'=argmax P(C|W)
e =argmax P(IW|C)P(C)/P(W)

T —

HMM-Based Slot Filling

Find best concept sequence C given words W

C'= argmax P(C|W)

= argmax P(IW|C)P(C)/P(W)
= argmax P(W|C)P(C)

HMM-Based Slot Filling

®* Find best concept sequence C given words W
e C'=argmax P(C|W)

e =argmax P(W|C)P(C)/P(W)

e =argmax P(W|C)P(C)

® Assume limited M-concept history, N-gram words

HP(W lw, .. W, 0, C)HP(C [y Ciipgan)

Probabilistic Slot Filling

¢ Example HMM

VoiceXML

—

VoiceXML

e W3C standard for voice interfaces
e XML-based ‘programming’ framework for speech systems

® Provides recognition of:
e Speech, DTMF (touch tone codes)

VoiceXML

e W3C standard for voice interfaces
o XML-based ‘programming’ framework for speech systems

® Provides recognition of:
e Speech, DTMF (touch tone codes)

® Provides output of synthesized speech, recorded audio

VoiceXML

e W3C standard for voice interfaces
o XML-based ‘programming’ framework for speech systems

® Provides recognition of:
e Speech, DTMF (touch tone codes)

® Provides output of synthesized speech, recorded audio

® Supports recording of user input

VoiceXML

e W3C standard for voice interfaces
o XML-based ‘programming’ framework for speech systems

® Provides recognition of:
e Speech, DTMF (touch tone codes)

® Provides output of synthesized speech, recorded audio

® Supports recording of user input

® Enables interchange between voice interface, web-based apps

VoiceXML

e W3C standard for voice interfaces
o XML-based ‘programming’ framework for speech systems
® Provides recognition of:
® Speech, DTMF (touch tone codes)
® Provides output of synthesized speech, recorded audio

® Supports recording of user input

® Enables interchange between voice interface, web-based apps

e Structures voice interaction

VoiceXML

e W3C standard for voice interfaces
o XML-based ‘programming’ framework for speech systems

® Provides recognition of:
® Speech, DTMF (touch tone codes)

® Provides output of synthesized speech, recorded audio

® Supports recording of user input

® Enables interchange between voice interface, web-based apps
® Structures voice interaction

® Can incorporate Javascript for functionality

———

Capabilities

® |nteractions:
e Default behavior is FST-style, system initiative

Capabilities

®* |nteractions:
e Default behavior is FST-style, system initiative

e Can implement frame-based mixed initiative

Capabilities

®* |nteractions:
e Default behavior is FST-style, system initiative

e Can implement frame-based mixed initiative

e Support for sub-dialog call-outs

Speech [/0

o ASR:

® Supports speech recognition defined by
® Grammars

® Trigrams
® Domain managers: credit card nos etc

Speech [/0

o ASR:

® Supports speech recognition defined by
® Grammars
® Trigrams
® Domain managers: credit card nos etc

o TTS:;

® <ssml> markup language
® Allows choice of: language, voice, pronunciation
® Allows tuning of: timing, breaks

Simple VoiceXML Example

® Minimal form:

<form>
<field name="transporttype~>
<prompt> o
Please choose airline, hotel, or rental car.
</prompt>
<grammar type="application/x=nuance-gsl">
[airline hotel "rental car”]
</grammar>
</field>
<block>
<prompt>
You have chosen <value expr="transporttype->.
</prompt>
</block>
</form>

Basic VXML Document

® Main body: <form></form>
® Sequence of fields: <field></field>

Basic VXML Document

® Main body: <form></form>
® Sequence of fields: <field></field>

® Correspond to variable storing user input
o <field name="“transporttype”>

Basic VXML Document

® Main body: <form></form>
® Sequence of fields: <field></field>

® Correspond to variable storing user input
o <field name="“transporttype”>

® Prompt for user input
® <prompt> Please choose airline, hotel, or rental car.</prompt>

® Can include URL for recorded prompt, backs off

Basic VXML Document

® Main body: <form></form>
® Sequence of fields: <field></field>

® Correspond to variable storing user input
o <field name="“transporttype”>

® Prompt for user input
® <prompt> Please choose airline, hotel, or rental car.</prompt>
® Can include URL for recorded prompt, backs off

® Specify grammar to recognize/interpret user input

|H

® <grammar>[airline hote

rental car’]</grammar>

Other Field Elements

® Context-dependent help:

® <help>Please select activity.</help>

Other Field Elements

® Context-dependent help:

® <help>Please select activity.</help>

® Action to be performed on input:
o <filled>
® <prompt>You have chosen <value exp=“transporttype”>.
* </prompt></filled>

Control Flow

® Default behavior:
e Step through elements of form in document order

Control Flow

® Default behavior:
e Step through elements of form in document order

® Goto allows jump to:
® (Other form: <goto next="“weather.xml”>
® (Other position in form: <goto next="“#departdate”>

Control Flow

® Default behavior:
e Step through elements of form in document order

® Goto allows jump to:
® (Other form: <goto next="“weather.xml”>
® (QOther position in form: <goto next=“#departdate”>

® Conditionals:
e <if cond="“varname=="‘air’’>....</if>

Control Flow

Default behavior:
e Step through elements of form in document order

Goto allows jump to:
® QOther form: <goto next=“weather.xml”>
® QOther position in form: <goto next=“#departdate”>

Conditionals:
e <if cond="“varname=="air’’>....</if>

Guards:
e Default: Skip field if slot value already entered

General Interaction

® ‘Universals’:
® Behaviors used by all apps, specify particulars
® Pick prompts for conditions

General Interaction

® ‘Universals’:
® Behaviors used by all apps, specify particulars
® Pick prompts for conditions

® <noinput>:
® No speech timeout

General Interaction

¢ ‘Universals’:
® Behaviors used by all apps, specify particulars
® Pick prompts for conditions

® <noinput>:
® No speech timeout

® <nomatch>:
® Speech, but nothing valid recognized

General Interaction

® ‘Universals’:
® Behaviors used by all apps, specify particulars
® Pick prompts for conditions

® <noinput>:
® No speech timeout

® <nomatch>:
® Speech, but nothing valid recognized

* <help>:
® (General system help prompt

Complex Interaction

® Preamble, grammar:

<noinput> I'm sorry, I didn’t hear you. <reprompt/> </noinput>
<nomatch> I'm sorry, I didn't understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl->
<:[CDATA[
Flight (3[
(1 [wanna (want to)] [£fly gol)
(1’d lixe to [£f1ly go])
([(1i wanna)(i'd like a)] £light)
]
[
([from leaving departing] City:x) {<origin $x>}
([(7going to)(arriving in)] City:x) {<destination $x>}
([from leaving departing] City:x
[(?going to)(arriving in)] City:y) {<origin $x> <destination $y>}

Iplease
)
City [[(san francisco) (s £ o0)] {return("san francisco, california”)}
[(denver) (d e n)] {return("denver, colorado”)}
[(seattle) (s t x)] {return("seattle, washington~)}
]
11> </grammar>

<initial name="init">
<prompt> Welcome to the consultant. What are your travel plans? </prompt>
</initial>

Mixed Initiative
* With guard defaults

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin*> </prompt>
</filled>
</fiela>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<filled>
<prompt> OK, to <value expr="destination"> </prompt>
</filled>
</field>
<block>
<prompt> OK, I have you are departing from <value expr=-"origin">
to <value expr="destination">. </prompt>
send the info to book a £flight...
</block>
</form>

Complex Interaction

® Preamble, external grammar:

<?xml version="1.0"2>
<vxml version = "2.0">

<form id="F1">

<field name="F 1">
<grammar src="NameGram.xml"
type="application/grammar-xml" />
<prompt>
Please tell me your full name so I can verify you
</prompt>
</field>

<filled mode="all" namelist="F 1">
<prompt>
Your name is <value expr="F 1"/>
<break strength="medium"/>
</prompt>
</filled>
</form>
</vxml>

Multi-slot Grammar

e <?xml version="1.0"7>
<grammar xml:lang="en-US" root = "TOPLEVEL">
<rule id="TOPLEVEL" scope="public">
<item>

<!-- FIRST NAME RETURN -->

<item repeat="0-1">
<ruleref uri="#FIRSTNAME"/>
7_ttag>out.firstNameSIot:ruIes.FIRSTNAME.firstNameSubsIot;</tag>
</item>
<!-- MIDDLE NAME RETURN -->

<item repeat="0-1">
<ruleref uri="#MIDDLENAME"/>
7_ttag>out.middIeNameSIot:ruIes.MIDDLENAME.middIeNameSubsIot;</tag>
</item>
<!-- LAST NAME RETURN -->

<ruleref uri="#LASTNAME"/>
<tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag>
</item>

<!-.- TOP LEVEL RETURN-->
7ta > out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag>
</rule>

Multi-slot Grammar |

e <rule id="FIRSTNAME" scope="public">
<one-of> _ .
<item> matt<tag>out.firstNameSubslot="matthew";</tag></item>
<item> dee <tag> out.firstNameSubslot="dee ";</tag></item>
<item> jon <tag> out.firstNameSubslot="jon ";</tag></item>
<item> %eorge <tag>out.firstNameSubslot="george ";</tag></item>

<item> Dbilly <tag> out.firstNameSubslot="billy ";</tag></item>
</one-of>
</rule>
<rule id="MIDDLENAME" scope="public">
<one-of>

<item> bon <tag>out.middleNameSubslot="bon ";</tag></item>
<item> double ya <tag> out.middleNameSubslot="w ";</tag></item>
<item> dee <tag> out.middleNameSubslot="dee ";</tag></item>
</one-of>
</rule>

<rule id="LASTNAME" scope="public">

<one-of>
<item> henry <tag> out.lastNameSubslot="henry "; </tag></item>
<item> ramone <tag> out.lastNameSubslot="dee "; </tag></item>
<item> jovi <tag> out.lastNameSubslot="jovi "; </tag></item>
<item> bush <tag> out.lastNameSubslot="bush "; </tag></item>
<item> williams <tag> out.lastNameSubslot="williams "; </tag></item>

</one-of>

</rule>

Augmenting VoiceXML

® Don’t write XML directly
® Use php or other system to generate VoiceXML
® Used in ‘Let’'s Go Dude’ bus info system

Augmenting VoiceXML

® Don’t write XML directly
® Use php or other system to generate VoiceXML
® Used in ‘Let’'s Go Dude’ bus info system

® Pass input to other web services
® j.e. to RESTful services

Augmenting VoiceXML

® Don’t write XML directly
® Use php or other system to generate VoiceXML
® Used in ‘Let’'s Go Dude’ bus info system

® Pass input to other web services
® j.e. to RESTful services

® Access web-based audio for prompts

