
Natural Language
Understanding

Ling575
Spoken Dialog Systems

April 17, 2013

Natural Language
Understanding

�  Generally:
�  Given a string of words representing a natural language

utterance, produce a meaning representation

Natural Language
Understanding

�  Generally:
�  Given a string of words representing a natural language

utterance, produce a meaning representation

�  For well-formed natural language text (see ling571),
�  Full parsing with a probabilistic context-free grammar

�  Augmented with semantic attachments in FOPC

�  Producing a general lambda calculus representation

Natural Language
Understanding

�  Generally:
�  Given a string of words representing a natural language

utterance, produce a meaning representation

�  For well-formed natural language text (see ling571),
�  Full parsing with a probabilistic context-free grammar

�  Augmented with semantic attachments in FOPC

�  Producing a general lambda calculus representation

�  What about spoken dialog systems?

NLU for SDS
�  Few SDS fully exploit this approach

NLU for SDS
�  Few SDS fully exploit this approach

�  Why not?

NLU for SDS
�  Few SDS fully exploit this approach

�  Why not?
�  Examples of travel air speech input (due to A. Black)

�  Eh, I wanna go, wanna go to Boston tomorrow

�  If its not too much trouble I’d be very grateful if one
might be able to aid me in arranging my travel
arrangements to Boston, Logan airport, at sometime
tomorrow morning, thank you.

�  Boston, tomorrow

NLU for SDS
�  Analyzing speech vs text

NLU for SDS
�  Analyzing speech vs text

�  Utterances:
�  ill-formed, disfluent, fragmentary, desultory, rambling

�  Vs well-formed

NLU for SDS
�  Analyzing speech vs text

�  Utterances:
�  ill-formed, disfluent, fragmentary, desultory, rambling

�  Vs well-formed

�  Domain:
�  Restricted, constrains interpretation

�  Vs. unrestricted

NLU for SDS
�  Analyzing speech vs text

�  Utterances:
�  ill-formed, disfluent, fragmentary, desultory, rambling

�  Vs well-formed

�  Domain:
�  Restricted, constrains interpretation

�  Vs. unrestricted

�  Interpretation:
�  Need specific pieces of data

�  Vs. full, complete representation

NLU for SDS
�  Analyzing speech vs text

�  Utterances:
�  ill-formed, disfluent, fragmentary, desultory, rambling

�  Vs well-formed

�  Domain:
�  Restricted, constrains interpretation

�  Vs. unrestricted

�  Interpretation:
�  Need specific pieces of data

�  Vs. full, complete representation

�  Speech recognition:
�  Error-prone, perfect full analysis difficult to obtain

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU

�  Goal:
�  Given a spoken utterance, assign to class c, in finite set C

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU

�  Goal:
�  Given a spoken utterance, assign to class c, in finite set C

�  Banking Example:
�  Open prompt: "How may I direct your call?”

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU

�  Goal:
�  Given a spoken utterance, assign to class c, in finite set C

�  Banking Example:
�  Open prompt: "How may I direct your call?”

�  Responses: may I have consumer lending?,

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU

�  Goal:
�  Given a spoken utterance, assign to class c, in finite set C

�  Banking Example:
�  Open prompt: "How may I direct your call?”

�  Responses: may I have consumer lending?,
�  l'd like my checking account balance, or

NLU for Spoken Dialog
�  Call routing (aka call classification):

�  (Chu-Carroll & Carpenter, 1998, Al-Shawi 2003)

�  Shallow form of NLU
�  Goal:

�  Given a spoken utterance, assign to class c, in finite set C

�  Banking Example:
�  Open prompt: "How may I direct your call?”
�  Responses: may I have consumer lending?,

�  l'd like my checking account balance, or

�  "ah I'm calling 'cuz ah a friend gave me this number and ah she
told me ah with this number I can buy some cars or whatever but
she didn't know how to explain it to me so l just called you you
know to get that information."

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model: Vector of word unigram, bigrams, trigrams

�  Filtering:

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model: Vector of word unigram, bigrams, trigrams

�  Filtering: by frequency

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model: Vector of word unigram, bigrams, trigrams

�  Filtering: by frequency
�  Exclude high frequency stopwords, low frequency rare words

�  Weighting

Call Routing
�  General approach:

�  Build classification model based on labeled training
data, e.g. manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model: Vector of word unigram, bigrams, trigrams

�  Filtering: by frequency
�  Exclude high frequency stopwords, low frequency rare words

�  Weighting: term frequency * inverse document frequency

Call Routing
�  General approach:

�  Build classification model based on labeled training data, e.g.
manually routed calls
�  Apply classifier to label new data

�  Vector-based call routing:
�  Model: Vector of word unigram, bigrams, trigrams

�  Filtering: by frequency
�  Exclude high frequency stopwords, low frequency rare words

�  Weighting: term frequency * inverse document frequency

�  (Dimensionality reduction by singular value decomposition)

�  Compute cosine similarity for new call & training examples

Meaning Representations
for Spoken Dialog

�  Typical model: Frame-slot semantics
�  Majority of spoken dialog systems

�  Almost all deployed spoken dialog systems

Meaning Representations
for Spoken Dialog

�  Typical model: Frame-slot semantics
�  Majority of spoken dialog systems

�  Almost all deployed spoken dialog systems

�  Frame:
�  Domain-dependent information structure
�  Set of attribute-value pairs
�  Information relevant to answering questions in domain

Natural Language
Understanding

�  Most systems use frame-slot semantics
Show me morning flights from Boston to SFO on Tuesday

�  SHOW:
�  FLIGHTS:

�  ORIGIN:
�  CITY: Boston

�  DATE:
�  DAY-OF-WEEK: Tuesday

�  TIME:

�  PART-OF-DAY: Morning

�  DEST:
�  CITY: San Francisco

Another NLU Example
�  Sagae et 2009

�  Utterance (speech): we are prepared to give you guys generators
for electricity downtown

�  ASR (NLU input): we up apparently give you guys generators for a
letter city don town

�  Frame (NLU output):
�  <s>.mood declarative
�  <s>.sem.agent kirk
�  <s>.sem.event deliver
�  <s>.sem.modal.possibility can
�  <s>.sem.speechact.type offer
�  <s>.sem.theme power-generator
�  <s>.sem.type event

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

�  Integrated parsing and semantic analysis
�  E.g. semantic grammars

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

�  Integrated parsing and semantic analysis
�  E.g. semantic grammars

�  Classification or sequence labeling approaches
�  HMM-based, MaxEnt-based

Grammars
�  Formal specification of strings in a language

�  A 4-tuple:
�  A set of terminal symbols: Σ
�  A set of non-terminal symbols: N
�  A set of productions P: of the form A -> α
�  A designated start symbol S

�  In regular grammars:
�  A is a non-terminal and α is of the form {N}Σ*

�  In context-free grammars:
�  A is a non-terminal and α in (Σ U N)*

Simple Air Travel Grammar
�  LIST -> show me | I want | can I see|…
�  DEPARTTIME -> (after|around|before) HOUR| morning |

afternoon | evening
�  HOUR -> one|two|three…|twelve (am|pm)
�  FLIGHTS -> (a) flight|flights
�  ORIGIN -> from CITY
�  DESTINATION -> to CITY
�  CITY -> Boston | San Francisco | Denver | Washington

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…
�  e.g. show -> LIST

� 

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…
�  e.g. show -> LIST

�  see -> LIST

�  I -> ε

�  can -> ε

�  * Boston -> Boston

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics
�  LIST -> show me | I want | can I see|…

�  e.g. show -> LIST
�  see -> LIST
�  I -> ε
�  can -> ε
�  * Boston -> Boston

�  Simple, but…
�  VERY limited, assumes direct correspondence

Semantic Grammars
�  Domain-specific semantic analysis

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

�  Semantic structure:
�  Some designated non-terminals correspond to slots

�  Associate terminal values to corresponding slot

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

�  Semantic structure:
�  Some designated non-terminals correspond to slots

�  Associate terminal values to corresponding slot

�  Frames can be nested

�  Widely used: Phoenix NLU (CU, CMU), vxml grammars

Show me morning flights from Boston to SFO on Tuesday

�  LIST -> show me | I want |
can I see|…

�  DEPARTTIME -> (after|
around|before) HOUR|
morning | afternoon | evening

�  HOUR -> one|two|three…|
twelve (am|pm)

�  FLIGHTS -> (a) flight|flights

�  ORIGIN -> from CITY

�  DESTINATION -> to CITY

�  CITY -> Boston | San
Francisco | Denver |
Washington

�  SHOW:

�  FLIGHTS:
�  ORIGIN:

�  CITY: Boston
�  DATE:

�  DAY-OF-WEEK: Tuesday

�  TIME:
�  PART-OF-DAY: Morning

�  DEST:
�  CITY: San Francisco

Semantic Grammars: Issues
�  Issues:

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

�  Managing ambiguity:
�  Can associate probabilities with parse & analysis

�  Build rules manually, then train probabilities w/data

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

�  Managing ambiguity:
�  Can associate probabilities with parse & analysis

�  Build rules manually, then train probabilities w/data

�  Domain- and application-specific
�  Hard to port

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

�  Motivation:
�  Improve robustness – fail-soft
�  Improve ambiguity handling – probabilities

�  Improve adaptation – train for new domains, apps

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

�  Motivation:
�  Improve robustness – fail-soft
�  Improve ambiguity handling – probabilities

�  Improve adaptation – train for new domains, apps

�  Many alternative classifier models
�  HMM-based, MaxEnt-based

HMM-Based Slot Filling
�  Find best concept sequence C given words W

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

� 

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

� 

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

�  = argmax P(W|C)P(C)

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

�  = argmax P(W|C)P(C)

�  Assume limited M-concept history, N-gram words
�  =

P(wi
i=2

N

∏ |wi−1...wi−N+1,ci) P(ci
i=2

N

∏ | ci−1...ci−M+1)

Probabilistic Slot Filling
�  Example HMM

VoiceXML

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

�  Structures voice interaction

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

�  Structures voice interaction

�  Can incorporate Javascript for functionality

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

�  Can implement frame-based mixed initiative

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

�  Can implement frame-based mixed initiative

�  Support for sub-dialog call-outs

Speech I/O
�  ASR:

�  Supports speech recognition defined by
�  Grammars

�  Trigrams

�  Domain managers: credit card nos etc

Speech I/O
�  ASR:

�  Supports speech recognition defined by
�  Grammars

�  Trigrams

�  Domain managers: credit card nos etc

�  TTS:
�  <ssml> markup language
�  Allows choice of: language, voice, pronunciation
�  Allows tuning of: timing, breaks

Simple VoiceXML Example
�  Minimal form:

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

�  Specify grammar to recognize/interpret user input
�  <grammar>[airline hotel “rental car”]</grammar>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

�  Action to be performed on input:
�  <filled>

�  <prompt>You have chosen <value exp=“transporttype”>.

�  </prompt></filled>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

� 

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

�  Guards:
�  Default: Skip field if slot value already entered

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars
�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

�  <help>:
�  General system help prompt

Complex Interaction
�  Preamble, grammar:

Mixed Initiative
�  With guard defaults

Complex Interaction
�  Preamble, external grammar:

Multi-slot Grammar
�  <?xml version= "1.0"?>

 <grammar xml:lang="en-US" root = "TOPLEVEL">
 <rule id="TOPLEVEL" scope="public">
 <item>

 <!-- FIRST NAME RETURN -->

 <item repeat="0-1">
 <ruleref uri="#FIRSTNAME"/>
 <tag>out.firstNameSlot=rules.FIRSTNAME.firstNameSubslot;</tag>
 </item>
 <!-- MIDDLE NAME RETURN -->

 <item repeat="0-1">
 <ruleref uri="#MIDDLENAME"/>
 <tag>out.middleNameSlot=rules.MIDDLENAME.middleNameSubslot;</tag>
 </item>
 <!-- LAST NAME RETURN -->

 <ruleref uri="#LASTNAME"/>
 <tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag>
 </item>

 <!-- TOP LEVEL RETURN-->
 <tag> out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag>
 </rule>

Multi-slot Grammar II
�  <rule id="FIRSTNAME" scope="public">

 <one-of>
 <item> matt<tag>out.firstNameSubslot="matthew";</tag></item>
 <item> dee <tag> out.firstNameSubslot="dee ";</tag></item>
 <item> jon <tag> out.firstNameSubslot="jon ";</tag></item>
 <item> george <tag>out.firstNameSubslot="george ";</tag></item>
 <item> billy <tag> out.firstNameSubslot="billy ";</tag></item>
 </one-of>
 </rule>

 <rule id="MIDDLENAME" scope="public">
 <one-of>
 <item> bon <tag>out.middleNameSubslot="bon ";</tag></item>
 <item> double ya <tag> out.middleNameSubslot="w ";</tag></item>
 <item> dee <tag> out.middleNameSubslot="dee ";</tag></item>
 </one-of>
 </rule>

 <rule id="LASTNAME" scope="public">
 <one-of>
 <item> henry <tag> out.lastNameSubslot="henry "; </tag></item>
 <item> ramone <tag> out.lastNameSubslot="dee "; </tag></item>
 <item> jovi <tag> out.lastNameSubslot="jovi "; </tag></item>
 <item> bush <tag> out.lastNameSubslot=""bush "; </tag></item>
 <item> williams <tag> out.lastNameSubslot="williams "; </tag></item>
 </one-of>
 </rule>

</grammar>

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

�  Access web-based audio for prompts

