
NLU &
Advanced Dialog Models

Ling575
Spoken Dialog Systems

April 24, 2013

Meaning Representations
for Spoken Dialog

�  Typical model: Frame-slot semantics
�  Majority of spoken dialog systems

�  Almost all deployed spoken dialog systems

Meaning Representations
for Spoken Dialog

�  Typical model: Frame-slot semantics
�  Majority of spoken dialog systems

�  Almost all deployed spoken dialog systems

�  Frame:
�  Domain-dependent information structure
�  Set of attribute-value pairs
�  Information relevant to answering questions in domain

Natural Language
Understanding

�  Most systems use frame-slot semantics
Show me morning flights from Boston to SFO on Tuesday

�  SHOW:
�  FLIGHTS:

�  ORIGIN:
�  CITY: Boston

�  DATE:
�  DAY-OF-WEEK: Tuesday

�  TIME:

�  PART-OF-DAY: Morning

�  DEST:
�  CITY: San Francisco

Another NLU Example
�  Sagae et 2009

�  Utterance (speech): we are prepared to give you guys generators
for electricity downtown

�  ASR (NLU input): we up apparently give you guys generators for a
letter city don town

�  Frame (NLU output):
�  <s>.mood declarative
�  <s>.sem.agent kirk
�  <s>.sem.event deliver
�  <s>.sem.modal.possibility can
�  <s>.sem.speechact.type offer
�  <s>.sem.theme power-generator
�  <s>.sem.type event

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

�  Integrated parsing and semantic analysis
�  E.g. semantic grammars

Question
�  Given an ASR output string, how can we tractably

and robustly derive a meaning representation?

�  Many approaches:
�  Shallow transformation:

�  Terminal substitution

�  Integrated parsing and semantic analysis
�  E.g. semantic grammars

�  Classification or sequence labeling approaches
�  HMM-based, MaxEnt-based

Grammars
�  Formal specification of strings in a language

�  A 4-tuple:
�  A set of terminal symbols: Σ
�  A set of non-terminal symbols: N
�  A set of productions P: of the form A -> α
�  A designated start symbol S

�  In regular grammars:
�  A is a non-terminal and α is of the form {N}Σ*

�  In context-free grammars:
�  A is a non-terminal and α in (Σ U N)*

Simple Air Travel Grammar
�  LIST -> show me | I want | can I see|…
�  DEPARTTIME -> (after|around|before) HOUR| morning |

afternoon | evening
�  HOUR -> one|two|three…|twelve (am|pm)
�  FLIGHTS -> (a) flight|flights
�  ORIGIN -> from CITY
�  DESTINATION -> to CITY
�  CITY -> Boston | San Francisco | Denver | Washington

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…
�  e.g. show -> LIST

� 

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics

�  LIST -> show me | I want | can I see|…
�  e.g. show -> LIST

�  see -> LIST

�  I -> ε

�  can -> ε

�  * Boston -> Boston

Shallow Semantics
�  Terminal substitution

�  Employed by some speech toolkits, e.g. CSLU

�  Rules convert terminals in grammar to semantics
�  LIST -> show me | I want | can I see|…

�  e.g. show -> LIST
�  see -> LIST
�  I -> ε
�  can -> ε
�  * Boston -> Boston

�  Simple, but…
�  VERY limited, assumes direct correspondence

Semantic Grammars
�  Domain-specific semantic analysis

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

�  Semantic structure:
�  Some designated non-terminals correspond to slots

�  Associate terminal values to corresponding slot

Semantic Grammars
�  Domain-specific semantic analysis

�  Syntactic structure:
�  Context-free grammars (CFGs) (typically)

�  Can be parsed by standard CFG parsing algorithms
�  e.g. Earley parsers or CKY

�  Semantic structure:
�  Some designated non-terminals correspond to slots

�  Associate terminal values to corresponding slot

�  Frames can be nested

�  Widely used: Phoenix NLU (CU, CMU), vxml grammars

Show me morning flights from Boston to SFO on Tuesday

�  LIST -> show me | I want |
can I see|…

�  DEPARTTIME -> (after|
around|before) HOUR|
morning | afternoon | evening

�  HOUR -> one|two|three…|
twelve (am|pm)

�  FLIGHTS -> (a) flight|flights

�  ORIGIN -> from CITY

�  DESTINATION -> to CITY

�  CITY -> Boston | San
Francisco | Denver |
Washington

�  SHOW:

�  FLIGHTS:
�  ORIGIN:

�  CITY: Boston
�  DATE:

�  DAY-OF-WEEK: Tuesday

�  TIME:
�  PART-OF-DAY: Morning

�  DEST:
�  CITY: San Francisco

Semantic Grammars: Issues
�  Issues:

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

�  Managing ambiguity:
�  Can associate probabilities with parse & analysis

�  Build rules manually, then train probabilities w/data

Semantic Grammars: Issues
�  Issues:

�  Generally manually constructed
�  Can be expensive, hard to update/maintain

�  Managing ambiguity:
�  Can associate probabilities with parse & analysis

�  Build rules manually, then train probabilities w/data

�  Domain- and application-specific
�  Hard to port

VoiceXML

Simple VoiceXML Example
�  Minimal form:

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

�  Specify grammar to recognize/interpret user input
�  <grammar>[airline hotel “rental car”]</grammar>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

�  Action to be performed on input:
�  <filled>

�  <prompt>You have chosen <value exp=“transporttype”>.

�  </prompt></filled>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

� 

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

�  Guards:
�  Default: Skip field if slot value already entered

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars
�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

�  <help>:
�  General system help prompt

Complex Interaction
�  Preamble, grammar:

Mixed Initiative
�  With guard defaults

Complex Interaction
�  Preamble, external grammar:

Multi-slot Grammar
�  <?xml version= "1.0"?>

 <grammar xml:lang="en-US" root = "TOPLEVEL">
 <rule id="TOPLEVEL" scope="public">
 <item>

 <!-- FIRST NAME RETURN -->

 <item repeat="0-1">
 <ruleref uri="#FIRSTNAME"/>
 <tag>out.firstNameSlot=rules.FIRSTNAME.firstNameSubslot;</tag>
 </item>
 <!-- MIDDLE NAME RETURN -->

 <item repeat="0-1">
 <ruleref uri="#MIDDLENAME"/>
 <tag>out.middleNameSlot=rules.MIDDLENAME.middleNameSubslot;</tag>
 </item>
 <!-- LAST NAME RETURN -->

 <ruleref uri="#LASTNAME"/>
 <tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag>
 </item>

 <!-- TOP LEVEL RETURN-->
 <tag> out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag>
 </rule>

Multi-slot Grammar II
�  <rule id="FIRSTNAME" scope="public">

 <one-of>
 <item> matt<tag>out.firstNameSubslot="matthew";</tag></item>
 <item> dee <tag> out.firstNameSubslot="dee ";</tag></item>
 <item> jon <tag> out.firstNameSubslot="jon ";</tag></item>
 <item> george <tag>out.firstNameSubslot="george ";</tag></item>
 <item> billy <tag> out.firstNameSubslot="billy ";</tag></item>
 </one-of>
 </rule>

 <rule id="MIDDLENAME" scope="public">
 <one-of>
 <item> bon <tag>out.middleNameSubslot="bon ";</tag></item>
 <item> double ya <tag> out.middleNameSubslot="w ";</tag></item>
 <item> dee <tag> out.middleNameSubslot="dee ";</tag></item>
 </one-of>
 </rule>

 <rule id="LASTNAME" scope="public">
 <one-of>
 <item> henry <tag> out.lastNameSubslot="henry "; </tag></item>
 <item> ramone <tag> out.lastNameSubslot="dee "; </tag></item>
 <item> jovi <tag> out.lastNameSubslot="jovi "; </tag></item>
 <item> bush <tag> out.lastNameSubslot=""bush "; </tag></item>
 <item> williams <tag> out.lastNameSubslot="williams "; </tag></item>
 </one-of>
 </rule>

</grammar>

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

�  Access web-based audio for prompts

Advanced Dialog Models
�  Information State Models

�  Statistical Dialog Models

Information State Models
�  Challenges in dialog management

�  Difficult to evaluate
�  Hard to isolate from implementations

�  Integration inhibits portability

�  Wide gap between theoretical and practical models
�  Theoretical: logic-based, BDI, plan-based, attention/

intention

�  Practical: mostly finite-state or frame-based

�  Even if theory-consistent, many possible implementations

�  Implementation dominates

Why the Gap?
�  Theories hard to implement

�  Underspecified

�  Overly complex, intractable

�  e.g. inferring all user
intents

�  Theories hard to compare
�  Employ diff’t basic units

�  Disagree on basic structure

�  Implementation is hard
�  Driven by technical

limitations, optimizations

�  Driven by specific tasks

�  Most approaches simplistic
�  Not focused on model

details

Information State Approach
�  Approach to formalizing dialog theories

�  Toolkit to support implementation (Trindikit)
�  Designed to abstract out dialog theory components

�  Example systems & related tools

Information State Theory of
Dialog

�  Components:
�  Informational components:

�  Common context and internal models (belief, goals, etc)
�  Formal representations:

�  Dialog moves: recognition and generation
�  Trigger state updates

�  Update rules:
�  Describe update given current state, moves, etc

�  Update strategy:
�  Method for selecting rules if more than one applies

�  Simple or complex

Example Dialog
�  S: Welcome to the travel agency!
�  U: flights to paris
�  S: Okay, you want to know about price. A flight. To

Paris. Let’s see. What city do you want to go from?

Example Update Rule

Implementation
�  Dialog Move Engine (DME)

�  Implements an information state dialog model
�  Observes/interprets moves
�  Updates information state based on moves
�  Generates new moves consistent with state

�  Full system requires: DME+
�  Input/output components
�  Interpretation: determine what move made
�  Generation: produce output for ‘next move’
�  Control system to manage components

Trindikit Architecture

Multi-level Architecture
�  Separates types of design expertise, knowledge

�  Domain & language resources à Domain system

�  Dialog theory à Abstract DME
�  IS, update rules, etc

�  Software Engineering à Trindikit
�  basic types, control

Statistical Dialog
Management

New Idea: Modeling a dialogue
system as a probabilistic agent

�  A conversational agent can be characterized by:
�  The current knowledge of the system

�  A set of states S the agent can be in

�  a set of actions A the agent can take
�  A goal G, which implies

�  A success metric that tells us how well the agent
achieved its goal

�  A way of using this metric to create a strategy or policy
π for what action to take in any particular state.

4/23/13 61 Speech and Language Processing -- Jurafsky and Martin

What do we mean by
actions A and policies π?

�  Kinds of decisions a conversational agent needs to
make:
�  When should I ground/confirm/reject/ask for

clarification on what the user just said?
�  When should I ask a directive prompt, when an

open prompt?
�  When should I use user, system, or mixed

initiative?

4/23/13 62 Speech and Language Processing -- Jurafsky and Martin

A threshold is a human-
designed policy!

�  Could we learn what the right action is
�  Rejection
�  Explicit confirmation
�  Implicit confirmation
�  No confirmation

�  By learning a policy which,
�  given various information about the current state,
�  dynamically chooses the action which maximizes

dialogue success

4/23/13 63 Speech and Language Processing -- Jurafsky and Martin

Another strategy decision
�  Open versus directive prompts

�  When to do mixed initiative

�  How we do this optimization?

�  Markov Decision Processes

4/23/13 64 Speech and Language Processing -- Jurafsky and Martin

Review: Open vs.
Directive Prompts

�  Open prompt
�  System gives user very few constraints

�  User can respond how they please:
�  “How may I help you?” “How may I direct your call?”

�  Directive prompt
�  Explicit instructs user how to respond

�  “Say yes if you accept the call; otherwise, say no”

4/23/13 65 Speech and Language Processing -- Jurafsky and Martin

Review: Restrictive vs.
Non-restrictive gramamrs
�  Restrictive grammar

�  Language model which strongly constrains the ASR
system, based on dialogue state

�  Non-restrictive grammar
�  Open language model which is not restricted to a

particular dialogue state

4/23/13 66 Speech and Language Processing -- Jurafsky and Martin

Kinds of Initiative
�  How do I decide which of these initiatives to use at

each point in the dialogue?

Grammar Open Prompt Directive Prompt

Restrictive Doesn’t make sense System Initiative

Non-restrictive User Initiative Mixed Initiative

4/23/13 67 Speech and Language Processing -- Jurafsky and Martin

Modeling a dialogue system
as a probabilistic agent

�  A conversational agent can be characterized by:
�  The current knowledge of the system

�  A set of states S the agent can be in

4/23/13 68 Speech and Language Processing -- Jurafsky and Martin

Modeling a dialogue system
as a probabilistic agent

�  A conversational agent can be characterized by:
�  The current knowledge of the system

�  A set of states S the agent can be in

�  a set of actions A the agent can take

4/24/13 69 Speech and Language Processing -- Jurafsky and Martin

Modeling a dialogue system
as a probabilistic agent

�  A conversational agent can be characterized by:
�  The current knowledge of the system

�  A set of states S the agent can be in

�  a set of actions A the agent can take
�  A goal G, which implies

�  A success metric that tells us how well the agent
achieved its goal

�  A way of using this metric to create a strategy or policy
π for what action to take in any particular state.

4/24/13 70 Speech and Language Processing -- Jurafsky and Martin

Goals are not enough
�  Goal: user satisfaction

�  OK, that’s all very well, but

4/23/13 71 Speech and Language Processing -- Jurafsky and Martin

Goals are not enough
�  Goal: user satisfaction

�  OK, that’s all very well, but
�  Many things influence user satisfaction

�  We don’t know user satisfaction til after the dialogue
is done

�  How do we know, state by state and action by action,
what the agent should do?

�  We need a more helpful metric that can apply to
each state

4/24/13 72 Speech and Language Processing -- Jurafsky and Martin

Utility
�  A utility function

�  maps a state or state sequence

�  onto a real number
�  describing the goodness of that state

�  I.e. the resulting “happiness” of the agent

4/23/13 73 Speech and Language Processing -- Jurafsky and Martin

Utility
�  A utility function

�  maps a state or state sequence

�  onto a real number
�  describing the goodness of that state

�  I.e. the resulting “happiness” of the agent

�  Principle of Maximum Expected Utility:
�  A rational agent should choose an action that

maximizes the agent’s expected utility

4/24/13 74 Speech and Language Processing -- Jurafsky and Martin

Maximum Expected Utility
�  Principle of Maximum Expected Utility:

�  A rational agent should choose an action that maximizes
the agent’s expected utility

�  Action A has possible outcome states Resulti(A)

�  E: agent’s evidence about current state of world

�  Before doing A, agent estimates prob of each
outcome
�  P(Resulti(A)|Do(A),E)

�  Thus can compute expected utility:

EU(A | E) = P(Resulti (A) |Do(A),E)U(Resulti (A)
i
∑)

4/23/13 75 Speech and Language Processing -- Jurafsky and Martin

Utility (Russell and
Norvig)

4/23/13 76 Speech and Language Processing -- Jurafsky and Martin

Markov Decision Processes
�  Or MDP

�  Characterized by:
�  a set of states S an agent can be in

�  a set of actions A the agent can take
�  A reward r(a,s) that the agent receives for taking an

action in a state

4/23/13 77 Speech and Language Processing -- Jurafsky and Martin

A brief tutorial example
�  Levin et al (2000)

�  A Day-and-Month dialogue system

�  Goal: fill in a two-slot frame:
�  Month: November
�  Day: 12th

�  Via the shortest possible interaction with user

4/23/13 78 Speech and Language Processing -- Jurafsky and Martin

What is a state?
�  In principle, MDP state could include any possible

information about dialogue
�  Complete dialogue history so far

4/23/13 79 Speech and Language Processing -- Jurafsky and Martin

What is a state?
�  In principle, MDP state could include any possible

information about dialogue
�  Complete dialogue history so far

�  Usually use a much more limited set
�  Values of slots in current frame
�  Most recent question asked to user
�  Users most recent answer
�  ASR confidence
�  etc

4/24/13 80 Speech and Language Processing -- Jurafsky and Martin

State in the Day-and-Month
example

�  Values of the two slots day and month.

�  Total:
�  2 special initial states si and sf.
�  365 states with a day and month
�  1 state for leap year
�  12 states with a month but no day
�  31 states with a day but no month
�  411 total states

4/23/13 81 Speech and Language Processing -- Jurafsky and Martin

Actions in MDP models of
dialogue

4/23/13 82 Speech and Language Processing -- Jurafsky and Martin

Actions in MDP models of
dialogue

�  Speech acts!
�  Ask a question

�  Explicit confirmation
�  Rejection

�  Give the user some database information
�  Tell the user their choices

�  Do a database query

4/24/13 83 Speech and Language Processing -- Jurafsky and Martin

Actions in the Day-and-
Month example

�  ad: a question asking for the day

�  am: a question asking for the month

�  adm: a question asking for the day+month

�  af: a final action submitting the form and
terminating the dialogue

4/23/13 84 Speech and Language Processing -- Jurafsky and Martin

A simple reward function
�  For this example, let’s use a cost function

�  A cost function for entire dialogue

�  Let
�  Ni=number of interactions (duration of dialogue)
�  Ne=number of errors in the obtained values (0-2)
�  Nf=expected distance from goal

�  (0 for complete date, 1 if either data or month are missing,
2 if both missing)

�  Then (weighted) cost is:

�  C = wi×Ni + we×Ne + wf×Nf

4/23/13 85 Speech and Language Processing -- Jurafsky and Martin

2 possible policies

Po=probability of error in open prompt

Pd=probability of error in directive prompt

4/23/13 86 Speech and Language Processing -- Jurafsky and Martin

2 possible policies
Strategy 1 is better than strategy
2 when
improved error rate justifies
longer interaction:

€

po − pd >
wi

2we

4/23/13 87 Speech and Language Processing -- Jurafsky and Martin

That was an easy
optimization

�  Only two actions, only tiny # of policies

�  In general, number of actions, states, policies is quite
large

�  So finding optimal policy π* is harder

�  We need reinforcement learning

�  Back to MDPs:

4/23/13 88 Speech and Language Processing -- Jurafsky and Martin

MDP
�  We can think of a dialogue as a trajectory in state

space

�  The best policy π* is the one with the greatest
expected reward over all trajectories

�  How to compute a reward for a state sequence?

4/23/13 89 Speech and Language Processing -- Jurafsky and Martin

Reward for a state
sequence

�  One common approach: discounted rewards

�  Cumulative reward Q of a sequence is discounted sum
of utilities of individual states

�  Discount factor γ between 0 and 1

�  Makes agent care more about current than future
rewards; the more future a reward, the more
discounted its value

4/23/13 90 Speech and Language Processing -- Jurafsky and Martin

The Markov assumption
�  MDP assumes that state transitions are Markovian

€

P(st+1 | st ,st−1,...,so,at ,at−1,...,ao) = PT (st+1 | st ,at)

4/23/13 91 Speech and Language Processing -- Jurafsky and Martin

Expected reward for an
action

�  Expected cumulative reward Q(s,a) for taking a
particular action from a particular state can be
computed by Bellman equation:

�  Expected cumulative reward for a given state/action
pair is:
�  immediate reward for current state
�  + expected discounted utility of all possible next states s’
�  Weighted by probability of moving to that state s’
�  And assuming once there we take optimal action a’

4/23/13 92 Speech and Language Processing -- Jurafsky and Martin

What we need for Bellman
equation

�  A model of p(s’|s,a)

�  Estimate of R(s,a)

�  How to get these?

4/23/13 93 Speech and Language Processing -- Jurafsky and Martin

What we need for Bellman
equation

�  A model of p(s’|s,a)

�  Estimate of R(s,a)

�  How to get these?

�  If we had labeled training data
�  P(s’|s,a) = C(s,s’,a)/C(s,a)

4/24/13 94 Speech and Language Processing -- Jurafsky and Martin

What we need for Bellman
equation

�  A model of p(s’|s,a)

�  Estimate of R(s,a)

�  How to get these?

�  If we had labeled training data
�  P(s’|s,a) = C(s,s’,a)/C(s,a)

�  If we knew the final reward for whole dialogue
R(s1,a1,s2,a2,…,sn)

�  Given these parameters, can use value iteration
algorithm to learn Q values (pushing back reward
values over state sequences) and hence best policy

4/24/13 95 Speech and Language Processing -- Jurafsky and Martin

Final reward
�  What is the final reward for whole dialogue

R(s1,a1,s2,a2,…,sn)?

�  This is what our automatic evaluation metric PARADISE
computes!

�  The general goodness of a whole dialogue!!!!!

4/23/13 96 Speech and Language Processing -- Jurafsky and Martin

How to estimate p(s’|s,a)
without labeled data

4/23/13 97 Speech and Language Processing -- Jurafsky and Martin

How to estimate p(s’|s,a)
without labeled data

�  Have random conversations with real people
�  Carefully hand-tune small number of states and

policies
�  Then can build a dialogue system which explores state

space by generating a few hundred random
conversations with real humans

�  Set probabilities from this corpus

4/24/13 98 Speech and Language Processing -- Jurafsky and Martin

How to estimate p(s’|s,a)
without labeled data

�  Have random conversations with real people
�  Carefully hand-tune small number of states and policies
�  Then can build a dialogue system which explores state

space by generating a few hundred random conversations
with real humans

�  Set probabilities from this corpus

�  Have random conversations with simulated people
�  Now you can have millions of conversations with simulated

people
�  So you can have a slightly larger state space

4/24/13 99 Speech and Language Processing -- Jurafsky and Martin

An example
�  Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing

Dialogue Management with Reinforcement Learning: Experiments
with the NJFun System. Journal of AI Research.

�  NJFun system, people asked questions about
recreational activities in New Jersey

�  Idea of paper: use reinforcement learning to make a
small set of optimal policy decisions

4/23/13 100 Speech and Language Processing -- Jurafsky and Martin

Very small # of states and
acts

�  States: specified by values of 8 features
�  Which slot in frame is being worked on (1-4)
�  ASR confidence value (0-5)
�  How many times a current slot question had been asked
�  Restrictive vs. non-restrictive grammar
�  Result: 62 states

�  Actions: each state only 2 possible actions
�  Asking questions: System versus user initiative
�  Receiving answers: explicit versus no confirmation.

4/23/13 101 Speech and Language Processing -- Jurafsky and Martin

Ran system with real
users

�  311 conversations

�  Simple binary reward function
�  1 if competed task (finding museums, theater, winetasting in NJ area)
�  0 if not

�  System learned good dialogue strategy: Roughly
�  Start with user initiative
�  Backoff to mixed or system initiative when re-asking for an attribute

�  Confirm only a lower confidence values

4/23/13 102 Speech and Language Processing -- Jurafsky and Martin

State of the art
�  Only a few such systems

�  From (former) ATT Laboratories researchers, now
dispersed

�  And Cambridge UK lab

�  Hot topics:
�  Partially observable MDPs (POMDPs)
�  We don’t REALLY know the user’s state (we only know

what we THOUGHT the user said)
�  So need to take actions based on our BELIEF , I.e. a

probability distribution over states rather than the “true
state”

4/23/13 103 Speech and Language Processing -- Jurafsky and Martin

Summary
�  Utility-based conversational agents

�  Policy/strategy for:
�  Confirmation
�  Rejection
�  Open/directive prompts
�  Initiative
�  +?????

�  MDP
�  POMDP

4/23/13 104 Speech and Language Processing -- Jurafsky and Martin

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

�  Motivation:
�  Improve robustness – fail-soft
�  Improve ambiguity handling – probabilities

�  Improve adaptation – train for new domains, apps

Learning Probabilistic
Slot Filling

�  Goal: Use machine learning to map from
recognizer strings to semantic slots and fillers

�  Motivation:
�  Improve robustness – fail-soft
�  Improve ambiguity handling – probabilities

�  Improve adaptation – train for new domains, apps

�  Many alternative classifier models
�  HMM-based, MaxEnt-based

HMM-Based Slot Filling
�  Find best concept sequence C given words W

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

� 

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

� 

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

�  = argmax P(W|C)P(C)

HMM-Based Slot Filling
�  Find best concept sequence C given words W

�  C*= argmax P(C|W)

�  = argmax P(W|C)P(C)/P(W)

�  = argmax P(W|C)P(C)

�  Assume limited M-concept history, N-gram words
�  =

P(wi
i=2

N

∏ |wi−1...wi−N+1,ci) P(ci
i=2

N

∏ | ci−1...ci−M+1)

Probabilistic Slot Filling
�  Example HMM

