NLU & Advanced Dialog Models

Ling575 Spoken Dialog Systems April 24, 2013

Meaning Representations for Spoken Dialog

- Typical model: Frame-slot semantics
 - Majority of spoken dialog systems
 - Almost all deployed spoken dialog systems

Meaning Representations for Spoken Dialog

- Typical model: Frame-slot semantics
 - Majority of spoken dialog systems
 - Almost all deployed spoken dialog systems
- Frame:
 - Domain-dependent information structure
 - Set of attribute-value pairs
 - Information relevant to answering questions in domain

Natural Language Understanding

- Most systems use frame-slot semantics Show me morning flights from Boston to SFO on Tuesday
 - SHOW:
 - FLIGHTS:
 - ORIGIN:
 - CITY: Boston
 - DATE:
 - DAY-OF-WEEK: Tuesday
 - TIME:
 - PART-OF-DAY: Morning
 - DEST:
 - CITY: San Francisco

Another NLU Example

- Sagae et 2009
- Utterance (speech): we are prepared to give you guys generators for electricity downtown
- ASR (NLU input): we up apparently give you guys generators for a letter city don town
- Frame (NLU output):
 - <s>.mood declarative
 - <s>.sem.agent kirk
 - <s>.sem.event deliver
 - <s>.sem.modal.possibility can
 - <s>.sem.speechact.type offer
 - <s>.sem.theme power-generator
 - <s>.sem.type event

• Given an ASR output string, how can we tractably and robustly derive a meaning representation?

- Given an ASR output string, how can we tractably and robustly derive a meaning representation?
- Many approaches:
 - Shallow transformation:
 - Terminal substitution

- Given an ASR output string, how can we tractably and robustly derive a meaning representation?
- Many approaches:
 - Shallow transformation:
 - Terminal substitution
 - Integrated parsing and semantic analysis
 - E.g. semantic grammars

- Given an ASR output string, how can we tractably and robustly derive a meaning representation?
- Many approaches:
 - Shallow transformation:
 - Terminal substitution
 - Integrated parsing and semantic analysis
 - E.g. semantic grammars
 - Classification or sequence labeling approaches
 - HMM-based, MaxEnt-based

Grammars

- Formal specification of strings in a language
- A 4-tuple:
 - A set of terminal symbols: Σ
 - A set of non-terminal symbols: N
 - A set of productions P: of the form A -> α
 - A designated start symbol S
- In regular grammars:
 - A is a non-terminal and α is of the form {N} Σ^*
- In context-free grammars:
 - A is a non-terminal and α in ($\Sigma \cup N$)*

Simple Air Travel Grammar

- LIST -> show me | I want | can I see |...
- DEPARTTIME -> (after|around|before) HOUR| morning | afternoon | evening
- HOUR -> one|two|three...|twelve (am|pm)
- FLIGHTS -> (a) flight|flights
- ORIGIN -> from CITY
- DESTINATION -> to CITY
- CITY -> Boston | San Francisco | Denver | Washington

- Terminal substitution
 - Employed by some speech toolkits, e.g. CSLU

- Terminal substitution
 - Employed by some speech toolkits, e.g. CSLU
- Rules convert terminals in grammar to semantics
 - LIST -> show me | I want | can I see |...

- Terminal substitution
 - Employed by some speech toolkits, e.g. CSLU
- Rules convert terminals in grammar to semantics
 - LIST -> show me | I want | can I see|...
 - e.g. show -> LIST

- Terminal substitution
 - Employed by some speech toolkits, e.g. CSLU
- Rules convert terminals in grammar to semantics
 - LIST -> show me | I want | can I see|...
 - e.g. show -> LIST
 - see -> LIST
 - 3 <- |
 - can -> ε
 - * Boston -> Boston

- Terminal substitution
 - Employed by some speech toolkits, e.g. CSLU
- Rules convert terminals in grammar to semantics
 - LIST -> show me | I want | can I see|...
 - e.g. show -> LIST
 - see -> LIST
 - *3* <- |
 - can -> ε
 - * Boston -> Boston
- Simple, but...
 - VERY limited, assumes direct correspondence

• Domain-specific semantic analysis

- Domain-specific semantic analysis
- Syntactic structure:
 - Context-free grammars (CFGs) (typically)
 - Can be parsed by standard CFG parsing algorithms
 - e.g. Earley parsers or CKY

- Domain-specific semantic analysis
- Syntactic structure:
 - Context-free grammars (CFGs) (typically)
 - Can be parsed by standard CFG parsing algorithms
 - e.g. Earley parsers or CKY
- Semantic structure:
 - Some designated non-terminals correspond to slots
 - Associate terminal values to corresponding slot

- Domain-specific semantic analysis
- Syntactic structure:
 - Context-free grammars (CFGs) (typically)
 - Can be parsed by standard CFG parsing algorithms
 - e.g. Earley parsers or CKY
- Semantic structure:
 - Some designated non-terminals correspond to slots
 - Associate terminal values to corresponding slot
- Frames can be nested
- Widely used: Phoenix NLU (CU, CMU), vxml grammars

Show me morning flights from Boston to SFO on Tuesday

- LIST -> show me | I want | can I see|...
- DEPARTTIME -> (after| around|before) HOUR| morning | afternoon | evening
- HOUR -> one|two|three...| twelve (am|pm)
- FLIGHTS -> (a) flight|flights
- ORIGIN -> from CITY
- DESTINATION -> to CITY
- CITY -> Boston | San Francisco | Denver | Washington

- SHOW:
- FLIGHTS:
 - ORIGIN:
 - CITY: Boston
 - DATE:
 - DAY-OF-WEEK: Tuesday
 - TIME:
 - PART-OF-DAY: Morning
 - DEST:
 - CITY: San Francisco

- Generally manually constructed
 - Can be expensive, hard to update/maintain

- Generally manually constructed
 - Can be expensive, hard to update/maintain
- Managing ambiguity:
 - Can associate probabilities with parse & analysis
 - Build rules manually, then train probabilities w/data

- Generally manually constructed
 - Can be expensive, hard to update/maintain
- Managing ambiguity:
 - Can associate probabilities with parse & analysis
 - Build rules manually, then train probabilities w/data
- Domain- and application-specific
 - Hard to port

VoiceXML

Simple VoiceXML Example

• Minimal form:

```
<form>

<field name="transporttype">

<prompt>

Please choose airline, hotel, or rental car.

</prompt>

<grammar type="application/x=nuance-gsl">

</grammar type="application/x=nuance-gsl"</grammar type="application"</grammar type="application")</pre>
```


- Main body: <form></form>
 - Sequence of fields: <field></field>

- Main body: <form></form>
 - Sequence of fields: <field></field>
 - Correspond to variable storing user input
 - <field name="transporttype">

- Main body: <form></form>
 - Sequence of fields: <field></field>
 - Correspond to variable storing user input
 - <field name="transporttype">
 - Prompt for user input
 - <prompt> Please choose airline, hotel, or rental car.</prompt>
 - Can include URL for recorded prompt, backs off

- Main body: <form></form>
 - Sequence of fields: <field></field>
 - Correspond to variable storing user input
 - <field name="transporttype">
 - Prompt for user input
 - <prompt> Please choose airline, hotel, or rental car.</prompt>
 - Can include URL for recorded prompt, backs off
 - Specify grammar to recognize/interpret user input
 - <grammar>[airline hotel "rental car"]</grammar>

Other Field Elements

- Context-dependent help:
 - <help>Please select activity.</help>

Other Field Elements

- Context-dependent help:
 - <help>Please select activity.</help>
- Action to be performed on input:
 - <filled>
 - outline outline value exp="transporttype">.
 - </prompt></filled>

Control Flow

- Default behavior:
 - Step through elements of form in document order

Control Flow

- Default behavior:
 - Step through elements of form in document order
- Goto allows jump to:
 - Other form: <goto next="weather.xml">
 - Other position in form: <goto next="#departdate">

Control Flow

- Default behavior:
 - Step through elements of form in document order
- Goto allows jump to:
 - Other form: <goto next="weather.xml">
 - Other position in form: <goto next="#departdate">
- Conditionals:
 - <if cond="varname=='air'">....</if>
Control Flow

- Default behavior:
 - Step through elements of form in document order
- Goto allows jump to:
 - Other form: <goto next="weather.xml">
 - Other position in form: <goto next="#departdate">
- Conditionals:
 - <if cond="varname=='air'">....</if>
- Guards:
 - Default: Skip field if slot value already entered

- 'Universals':
 - Behaviors used by all apps, specify particulars
 - Pick prompts for conditions

- 'Universals':
 - Behaviors used by all apps, specify particulars
 - Pick prompts for conditions
- <noinput>:
 - No speech timeout

- 'Universals':
 - Behaviors used by all apps, specify particulars
 - Pick prompts for conditions
- <noinput>:
 - No speech timeout
- omatch>:
 - Speech, but nothing valid recognized

- 'Universals':
 - Behaviors used by all apps, specify particulars
 - Pick prompts for conditions
- <noinput>:
 - No speech timeout
- omatch>:
 - Speech, but nothing valid recognized
- <help>:
 - General system help prompt

Complex Interaction

• Preamble, grammar:

```
<noinput>
            I'm sorry, I didn't hear you. <reprompt/> </noinput>
<nomatch> I'm sorry, I didn't understand that. <reprompt/> </nomatch>
<form>
   <grammar type="application/x=nuance-gs1">
   <![ CDATA[
   Flight ( ?[
            (i [wanna (want to)] [fly go])
            (i'd like to [fly go])
             ([(i wanna)(i'd like a)] flight)
          1
            ( [from leaving departing] City:x) {<origin $x>}
            ( [(?going to)(arriving in)] City:x) {<destination $x>}
            ( [from leaving departing] City:x
              [(?going to)(arriving in)] City:y) {<origin $x> <destination $y>}
          ?please
    City [ [(san francisco) (s f o)] {return( "san francisco, california")}
            [(denver) (d e n)] {return( "denver, colorado")}
            [(seattle) (s t x)] {return( "seattle, washington")}
     ]]> </grammar>
 <initial name="init">
    <prompt> Welcome to the consultant. What are your travel plans? </prompt>
 </initial>
```

Mixed Initiative

• With guard defaults

```
<field name="origin">
     <prompt> Which city do you want to leave from? </prompt>
     <filled>
        <prompt> OK, from <value expr="origin"> </prompt></prompt>
     </filled>
  </field>
 <field name="destination">
     <prompt> And which city do you want to go to? </prompt>
     <filled>
        <prompt> OK, to <value expr="destination"> </prompt></prompt>
     </filled>
  </field>
  <block>
     <prompt> OK, I have you are departing from <value expr="origin">
              to <value expr="destination">. </prompt>
    send the info to book a flight...
  </block>
</form>
```


Complex Interaction

• Preamble, external grammar:

```
<?xml version="1.0"?>
<vxml version = "2.0">
```

```
<form id="F1">
```

```
<field name="F_1">
        <grammar src="NameGram.xml"
type="application/grammar-xml" />
        <prompt>
        Please tell me your full name so I can verify you
        </prompt>
    </field>
```

```
<filled mode="all" namelist="F_1">
	<prompt>
	Your name is <value expr="F_1"/>
	<break strength="medium"/>
	</prompt>
	</filled>
</form>
</vxml>
```

Multi-slot Grammar

- <?xml version= "1.0"?>
 <grammar xml:lang="en-US" root = "TOPLEVEL">
 <rule id="TOPLEVEL" scope="public">
 <item>
 - <!-- FIRST NAME RETURN -->

```
<item repeat="0-1">
```

```
<ruleref uri="#FIRSTNAME"/>
```

- <tag>out.firstNameSlot=rules.FIRSTNAME.firstNameSubslot;</tag>
- </item>
- <!-- MIDDLE NAME RETURN -->

```
<item repeat="0-1">
<ruleref uri="#MIDDLENAME"/>
<tag>out.middleNameSlot=rules.MIDDLENAME.middleNameSubslot;</tag>
</item>
<!-- LAST NAME RETURN -->
```

```
<ruleref uri="#LASTNAME"/>
<tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag>
</item>
```

```
<!-- TOP LEVEL RETURN-->
```

```
<tag> out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag> </rule>
```

Multi-slot Grammar II

```
<rule id="FIRSTNAME" scope="public">
```

<one-of>

<item> matt<tag>out.firstNameSubslot="matthew";</tag></item> <item> dee <tag> out.firstNameSubslot="dee ";</tag></item> <item> jon <tag> out.firstNameSubslot="jon ";</tag></item> <item> george <tag>out.firstNameSubslot="george ";</tag></item> <item> billy <tag> out.firstNameSubslot="billy ";</tag></item> </one-of> </rule>

</1016/

```
<rule id="MIDDLENAME" scope="public">
```

<one-of>

<item> bon <tag>out.middleNameSubslot="bon ";</tag></item> <item> double ya <tag> out.middleNameSubslot="w ";</tag></item> <item> dee <tag> out.middleNameSubslot="dee ";</tag></item>

</one-of> </rule>

```
<rule id="LASTNAME" scope="public">
```

<one-of>

```
<item> henry <tag> out.lastNameSubslot="henry "; </tag></item>
<item> ramone <tag> out.lastNameSubslot="dee "; </tag></item>
<item> jovi <tag> out.lastNameSubslot="jovi "; </tag></item>
<item> bush <tag> out.lastNameSubslot="bush "; </tag></item>
<item> williams <tag> out.lastNameSubslot="williams "; </tag></item>
</one-of>
```

</rule>

</grammar>

Augmenting VoiceXML

- Don't write XML directly
 - Use php or other system to generate VoiceXML
 - Used in 'Let's Go Dude' bus info system

Augmenting VoiceXML

- Don't write XML directly
 - Use php or other system to generate VoiceXML
 - Used in 'Let's Go Dude' bus info system
- Pass input to other web services
 - i.e. to RESTful services

Augmenting VoiceXML

- Don't write XML directly
 - Use php or other system to generate VoiceXML
 - Used in 'Let's Go Dude' bus info system
- Pass input to other web services
 - i.e. to RESTful services
- Access web-based audio for prompts

Advanced Dialog Models

Information State Models

• Statistical Dialog Models

Information State Models

- Challenges in dialog management
 - Difficult to evaluate
 - Hard to isolate from implementations
 - Integration inhibits portability
 - Wide gap between theoretical and practical models
 - Theoretical: logic-based, BDI, plan-based, attention/ intention
 - Practical: mostly finite-state or frame-based
 - Even if theory-consistent, many possible implementations
 - Implementation dominates

Why the Gap?

- Theories hard to implement
 - Underspecified
 - Overly complex, intractable
 - e.g. inferring all user intents
- Theories hard to compare
 - Employ diff't basic units
 - Disagree on basic structure

- Implementation is hard
 - Driven by technical limitations, optimizations
 - Driven by specific tasks
- Most approaches simplistic
 - Not focused on model details

Information State Approach

Approach to formalizing dialog theories

- Toolkit to support implementation (Trindikit)
 - Designed to abstract out dialog theory components
- Example systems & related tools

Information State Theory of Dialog

- Components:
 - Informational components:
 - Common context and internal models (belief, goals, etc)
 - Formal representations:
 - Dialog moves: recognition and generation
 - Trigger state updates
 - Update rules:
 - Describe update given current state, moves, etc
 - Update strategy:
 - Method for selecting rules if more than one applies
 - Simple or complex

Example Dialog

- S: Welcome to the travel agency!
- U: flights to paris
- S: Okay, you want to know about price. A flight. To Paris. Let's see. What city do you want to go from?

		$\begin{bmatrix} BEL = \{\} \end{bmatrix}$	٦
		$AGENDA = \langle \rangle$	
PRIVATE	=	$PLAN = \left\langle \begin{array}{c} findout(?x.dept-month(x)), \\ findout(?x.dept-day(x)), \\ findout(?x.class(x)), \\ consultDB(?x.price(x)) \end{array} \right\rangle$	
		$TMP = \dots$	
		$_{\rm NIM} = \dots$	
		$\begin{bmatrix} \text{COM} = \{\text{dest-city(paris),how(plane)}\} \end{bmatrix}$	
SHARED	=	ISSUES = $\langle ?x.dept-city(x), ?x.price(x) \rangle$	
		$QUD = \langle ?x.dept-city(x) \rangle$	
		PU =	
		$ LU = \langle ask(sys, ?x.dept-city(x)), \ldots \rangle $	

Example Update Rule

U-RULE: accommodateQuestion(Q, A) PRE: $\begin{cases}
in(SHARED.LU, answer(usr, A)), \\
in(PRIVATE.PLAN, findout(Q)) \\
domain :: relevant(A, Q) \\
eff: \begin{cases}
del(PRIVATE.PLAN, findout(Q)) \\
push(SHARED.QUD, Q)
\end{cases}$

Implementation

- Dialog Move Engine (DME)
 - Implements an information state dialog model
 - Observes/interprets moves
 - Updates information state based on moves
 - Generates new moves consistent with state
- Full system requires: DME+
 - Input/output components
 - Interpretation: determine what move made
 - Generation: produce output for 'next move'
 - Control system to manage components

Trindikit Architecture

Multi-level Architecture

- Separates types of design expertise, knowledge
- Domain & language resources → Domain system
- Dialog theory
 - IS, update rules, etc
- Software Engineering
 - basic types, control

- → Abstract DME
- → Trindikit

Statistical Dialog Management

New Idea: Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.

What do we mean by actions A and policies π ?

- Kinds of decisions a conversational agent needs to make:
 - When should I ground/confirm/reject/ask for clarification on what the user just said?
 - When should I ask a directive prompt, when an open prompt?
 - When should I use user, system, or mixed initiative?

4/23/13

62

A threshold is a humandesigned policy!

- Could we learn what the right action is
 - Rejection
 - Explicit confirmation
 - Implicit confirmation
 - No confirmation
- By learning a policy which,
 - given various information about the current state,
 - dynamically chooses the action which maximizes dialogue success

Another strategy decision

- Open versus directive prompts
- When to do mixed initiative

- How we do this optimization?
- Markov Decision Processes

4/23/13

Review: Open vs. Directive Prompts

- Open prompt
 - System gives user very few constraints
 - User can respond how they please:
 - "How may I help you?" "How may I direct your call?"
- Directive prompt
 - Explicit instructs user how to respond
 - "Say yes if you accept the call; otherwise, say no"

65

Review: Restrictive vs. Non-restrictive gramamrs

- Restrictive grammar
 - Language model which strongly constrains the ASR system, based on dialogue state
- Non-restrictive grammar
 - Open language model which is not restricted to a particular dialogue state

4/23/13

Kinds of Initiative

• How do I decide which of these initiatives to use at each point in the dialogue?

Grammar	Open Prompt	Directive Prompt
Restrictive	Doesn't make sense	System Initiative
Non-restrictive	User Initiative	Mixed Initiative

67

Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in

68

Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take

69

4/24/13

Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.

70

4/24/13

Goals are not enough

- Goal: user satisfaction
- OK, that's all very well, but

Goals are not enough

- Goal: user satisfaction
- OK, that's all very well, but
 - Many things influence user satisfaction
 - We don't know user satisfaction til after the dialogue is done
 - How do we know, state by state and action by action, what the agent should do?
- We need a more helpful metric that can apply to each state

4/24/13

72
Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent

Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent
- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility

4/24/13

Maximum Expected Utility

- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility
- Action A has possible outcome states Result_i(A)
- E: agent's evidence about current state of world
- Before doing A, agent estimates prob of each outcome
 - P(Result_i(A)|Do(A),E)
- Thus can compute expected utility:

$$EU(A | E) = \sum_{i} P(Result_{i}(A) | Do(A), E)U(Result_{i}(A))$$

Utility (Russell and Norvig)

Markov Decision Processes

• Or MDP

- Characterized by:
 - a set of states S an agent can be in
 - a set of actions A the agent can take
 - A reward r(a,s) that the agent receives for taking an action in a state

A brief tutorial example

- Levin et al (2000)
- A Day-and-Month dialogue system
- Goal: fill in a two-slot frame:
 - Month: November
 - Day: 12th
- Via the shortest possible interaction with user

What is a state?

- In principle, MDP state could include any possible information about dialogue
 - Complete dialogue history so far

What is a state?

- In principle, MDP state could include any possible information about dialogue
 - Complete dialogue history so far
- Usually use a much more limited set
 - Values of slots in current frame
 - Most recent question asked to user
 - Users most recent answer
 - ASR confidence
 - etc

80

4/24/13

State in the Day-and-Month example

- Values of the two slots day and month.
- Total:
 - 2 special initial states s_i and s_f.
 - 365 states with a day and month
 - 1 state for leap year
 - 12 states with a month but no day
 - 31 states with a day but no month
 - 411 total states

Actions in MDP models of dialogue

82

Actions in MDP models of dialogue

- Speech acts!
 - Ask a question
 - Explicit confirmation
 - Rejection
 - Give the user some database information
 - Tell the user their choices
- Do a database query

83

Actions in the Day-and-Month example

- a_d: a question asking for the day
- a_m: a question asking for the month
- a_{dm}: a question asking for the day+month
- a_f: a final action submitting the form and terminating the dialogue

A simple reward function

- For this example, let's use a cost function
- A cost function for entire dialogue
- Let
 - N_i=number of interactions (duration of dialogue)
 - N_e =number of errors in the obtained values (0-2)
 - N_f=expected distance from goal
 - (0 for complete date, 1 if either data or month are missing, 2 if both missing)
- Then (weighted) cost is:
- $C = w_i \times N_i + w_e \times N_e + w_f \times N_f$

2 possible policies

Policy 1 (directive)

 $c_2 = -2w_i + 2p_0w_e$

 P_d =probability of error in directive prompt P_o =probability of error in open prompt

2 possible policies

Strategy 1 is better than strategy 2 when improved error rate justifies longer interaction: Policy 1 (directive)

87

Speech and Language Processing -- Jurafsky and Martin

That was an easy optimization

- Only two actions, only tiny # of policies
- In general, number of actions, states, policies is quite large
- So finding optimal policy π^* is harder
- We need reinforcement learning
- Back to MDPs:

MDP

• We can think of a dialogue as a trajectory in state space

$$s_1 \rightarrow_{a1,r1} s_2 \rightarrow_{a2,r2} s_3 \rightarrow_{a3,r3} \cdots$$

- The best policy π^* is the one with the greatest expected reward over all trajectories
- How to compute a reward for a state sequence?

Reward for a state sequence

- One common approach: discounted rewards
- Cumulative reward Q of a sequence is discounted sum of utilities of individual states

$$Q([s_0, a_0, s_1, a_1, s_2, a_2 \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots, q_n$$

 Makes agent care more about current than future rewards; the more future a reward, the more discounted its value

90

The Markov assumption

MDP assumes that state transitions are Markovian

$$P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_o, a_t, a_{t-1}, \dots, a_o) = P_T(s_{t+1} \mid s_t, a_t)$$

Expected reward for an action

 Expected cumulative reward Q(s,a) for taking a particular action from a particular state can be computed by Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

- Expected cumulative reward for a given state/action pair is:
 - immediate reward for current state
 - + expected discounted utility of all possible next states s'
 - Weighted by probability of moving to that state s'
 - And assuming once there we take optimal action a'

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s' |s,a) = C(s,s',a)/C(s,a)

4/24/13

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s' |s,a) = C(s,s',a)/C(s,a)
- If we knew the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)
- Given these parameters, can use value iteration algorithm to learn Q values (pushing back reward values over state sequences) and hence best policy

Speech and Language Processing -- Jurafsky and Martin

4/24/13

Final reward

- What is the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)?
- This is what our automatic evaluation metric PARADISE computes!
- The general goodness of a whole dialogue!!!!!

96

How to estimate p(s'|s,a) without labeled data

4/23/13

97

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus

98

4/24/13

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus
- Have random conversations with simulated people
 - Now you can have millions of conversations with simulated people
 - So you can have a slightly larger state space

An example

• Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. Journal of AI Research.

- NJFun system, people asked questions about recreational activities in New Jersey
- Idea of paper: use reinforcement learning to make a small set of optimal policy decisions

Very small # of states and acts

- **States**: specified by values of 8 features
 - Which slot in frame is being worked on (1-4)
 - ASR confidence value (0-5)
 - How many times a current slot question had been asked
 - Restrictive vs. non-restrictive grammar
 - Result: 62 states
- Actions: each state only 2 possible actions
 - Asking questions: System versus user initiative
 - Receiving answers: explicit versus no confirmation.

Ran system with real users

- 311 conversations
- Simple binary reward function
 - 1 if competed task (finding museums, theater, winetasting in NJ area)
 - 0 if not
- System learned good dialogue strategy: Roughly
 - Start with user initiative
 - Backoff to mixed or system initiative when re-asking for an attribute
 - Confirm only a lower confidence values

State of the art

- Only a few such systems
 - From (former) ATT Laboratories researchers, now dispersed
 - And Cambridge UK lab
- Hot topics:
 - Partially observable MDPs (POMDPs)
 - We don't REALLY know the user's state (we only know what we THOUGHT the user said)
 - So need to take actions based on our BELIEF, I.e. a probability distribution over states rather than the "true state"

103

Summary

- Utility-based conversational agents
 - Policy/strategy for:
 - Confirmation
 - Rejection
 - Open/directive prompts
 - Initiative
 - +?????
 - MDP
 - POMDP

Learning Probabilistic Slot Filling

• Goal: Use machine learning to map from recognizer strings to semantic slots and fillers

Learning Probabilistic Slot Filling

- Goal: Use machine learning to map from recognizer strings to semantic slots and fillers
- Motivation:
 - Improve robustness fail-soft
 - Improve ambiguity handling probabilities
 - Improve adaptation train for new domains, apps

Learning Probabilistic Slot Filling

- Goal: Use machine learning to map from recognizer strings to semantic slots and fillers
- Motivation:
 - Improve robustness fail-soft
 - Improve ambiguity handling probabilities
 - Improve adaptation train for new domains, apps
- Many alternative classifier models
 - HMM-based, MaxEnt-based

HMM-Based Slot Filling

• Find best concept sequence C given words W
- Find best concept sequence C given words W
- C*= argmax P(C|W)

- Find best concept sequence C given words W
- C*= argmax P(C|W)
- = $\operatorname{argmax} P(W|C)P(C)/P(W)$

- Find best concept sequence C given words W
- C*= argmax P(C|W)
- = $\operatorname{argmax} P(W|C)P(C)/P(W)$
- = $\operatorname{argmax} P(W|C)P(C)$

- Find best concept sequence C given words W
- C^{*}= argmax P(C|W)
- = $\operatorname{argmax} P(W|C)P(C)/P(W)$
- = $\operatorname{argmax} P(W|C)P(C)$
- Assume limited M-concept history, N-gram words

• =
$$\prod_{i=2}^{N} P(w_i | w_{i-1}...w_{i-N+1}, c_i) \prod_{i=2}^{N} P(c_i | c_{i-1}...c_{i-M+1})$$

Probabilistic Slot Filling

• Example HMM

