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Meaning Representations 
for Spoken Dialog 

�  Typical model: Frame-slot semantics 
�  Majority of  spoken dialog systems 

�  Almost all deployed spoken dialog systems 

�  Frame:  
�  Domain-dependent information structure 
�  Set of  attribute-value pairs 
�  Information relevant to answering questions in domain 



Natural Language 
Understanding 

�  Most systems use frame-slot semantics 
Show me morning flights from Boston to SFO on Tuesday 

�  SHOW: 
�  FLIGHTS: 

�  ORIGIN: 
�  CITY:     Boston 

�  DATE: 
�  DAY-OF-WEEK:   Tuesday 

�  TIME: 

�  PART-OF-DAY:     Morning 

�  DEST:  
�  CITY:     San Francisco 



Another NLU Example 
�  Sagae et 2009 

�  Utterance (speech): we are prepared to give you guys generators 
for electricity downtown 

�  ASR (NLU input): we up apparently give you guys generators for a 
letter city don town 

�  Frame (NLU output): 
�  <s>.mood declarative 
�  <s>.sem.agent kirk 
�  <s>.sem.event deliver 
�  <s>.sem.modal.possibility can 
�  <s>.sem.speechact.type offer 
�  <s>.sem.theme power-generator 
�  <s>.sem.type event 
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Question 
�  Given an ASR output string, how can we tractably 

and robustly derive a meaning representation? 

�  Many approaches: 
�  Shallow transformation:  

�  Terminal substitution  

�  Integrated parsing and semantic analysis 
�  E.g. semantic grammars 

�  Classification or sequence labeling approaches 
�  HMM-based, MaxEnt-based 



Grammars 
�  Formal specification of  strings in a language 

�  A 4-tuple: 
�  A set of  terminal symbols: Σ 
�  A set of  non-terminal symbols: N 
�  A set of  productions P: of  the form A -> α 
�  A designated start symbol S 

�  In regular grammars: 
�  A is a non-terminal and α is of  the form {N}Σ* 

�  In context-free grammars: 
�   A is a non-terminal and α in (Σ U N)* 



Simple Air Travel Grammar 
�  LIST -> show me | I want | can I see|… 
�  DEPARTTIME -> (after|around|before) HOUR| morning | 

afternoon | evening 
�  HOUR -> one|two|three…|twelve (am|pm) 
�  FLIGHTS -> (a) flight|flights 
�  ORIGIN -> from CITY 
�  DESTINATION -> to CITY 
�  CITY -> Boston | San Francisco | Denver | Washington 
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Shallow Semantics 
�  Terminal substitution  

�  Employed by some speech toolkits, e.g. CSLU 

�  Rules convert terminals in grammar to semantics 
�  LIST -> show me | I want | can I see|… 

�  e.g. show -> LIST 
�         see   -> LIST 
�         I       -> ε 
�         can   -> ε 
�        * Boston -> Boston 

�  Simple, but… 
�  VERY limited, assumes direct correspondence 
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Semantic Grammars 
�  Domain-specific semantic analysis 

�  Syntactic structure: 
�  Context-free grammars (CFGs) (typically) 

�  Can be parsed by standard CFG parsing algorithms 
�  e.g. Earley parsers or CKY 

�  Semantic structure: 
�  Some designated non-terminals correspond to slots 

�  Associate terminal values to corresponding slot 

�  Frames can be nested 

�  Widely used: Phoenix NLU (CU, CMU), vxml grammars 



Show me morning flights from Boston to SFO on Tuesday 
 

�  LIST -> show me | I want | 
can I see|… 

�  DEPARTTIME -> (after|
around|before) HOUR| 
morning | afternoon | evening 

�  HOUR -> one|two|three…|
twelve (am|pm) 

�  FLIGHTS -> (a) flight|flights 

�  ORIGIN -> from CITY 

�  DESTINATION -> to CITY 

�  CITY -> Boston | San 
Francisco | Denver | 
Washington 

�  SHOW: 

�  FLIGHTS: 
�  ORIGIN: 

�  CITY:      Boston 
�  DATE: 

�  DAY-OF-WEEK:   Tuesday 

�  TIME: 
�  PART-OF-DAY:     Morning 

�  DEST:  
�  CITY:     San Francisco 
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Semantic Grammars: Issues 
�  Issues: 

�  Generally manually constructed 
�  Can be expensive, hard to update/maintain 

�  Managing ambiguity: 
�  Can associate probabilities with parse & analysis 

�  Build rules manually, then train probabilities w/data 

�  Domain- and application-specific 
�  Hard to port 



VoiceXML 



Simple VoiceXML Example 
�  Minimal form: 
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Basic VXML Document 
�  Main body: <form></form> 

�  Sequence of  fields: <field></field> 
�  Correspond to variable storing user input 

�  <field name=“transporttype”> 

�  Prompt for user input 
�  <prompt> Please choose airline, hotel, or rental car.</prompt> 

�  Can include URL for recorded prompt, backs off  

�  Specify grammar to recognize/interpret user input 
�  <grammar>[airline hotel “rental car”]</grammar> 



Other Field Elements 
�  Context-dependent help: 

�  <help>Please select activity.</help> 

 



Other Field Elements 
�  Context-dependent help: 

�  <help>Please select activity.</help> 

�  Action to be performed on input: 
�  <filled> 

�  <prompt>You have chosen <value exp=“transporttype”>. 

�  </prompt></filled> 
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Control Flow 
�  Default behavior: 

�  Step through elements of  form in document order 

�  Goto allows jump to: 
�  Other form: <goto next=“weather.xml”> 
�  Other position in form: <goto next=“#departdate”> 

�  Conditionals: 
�  <if  cond=“varname==‘air’”>….</if> 

�  Guards: 
�  Default: Skip field if  slot value already entered 
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General Interaction 
�  ‘Universals’:  

�  Behaviors used by all apps, specify particulars 
�  Pick prompts for conditions 

�  <noinput>: 
�  No speech timeout 

�  <nomatch>: 
�  Speech, but nothing valid recognized 

�  <help>: 
�  General system help prompt 



Complex Interaction 
�  Preamble, grammar: 



Mixed Initiative 
�  With guard defaults 



Complex Interaction 
�  Preamble, external grammar: 



Multi-slot Grammar 
�  <?xml version= "1.0"?> 

  <grammar xml:lang="en-US" root = "TOPLEVEL"> 
    <rule id="TOPLEVEL" scope="public"> 
      <item> 
 
    <!-- FIRST NAME RETURN --> 
 
        <item repeat="0-1"> 
          <ruleref  uri="#FIRSTNAME"/> 
          <tag>out.firstNameSlot=rules.FIRSTNAME.firstNameSubslot;</tag> 
        </item> 
    <!-- MIDDLE NAME RETURN --> 
 
        <item repeat="0-1"> 
          <ruleref  uri="#MIDDLENAME"/> 
          <tag>out.middleNameSlot=rules.MIDDLENAME.middleNameSubslot;</tag> 
        </item> 
    <!-- LAST NAME RETURN --> 
 
          <ruleref  uri="#LASTNAME"/> 
          <tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag> 
        </item> 
 
  <!-- TOP LEVEL RETURN--> 
      <tag> out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag> 
    </rule> 



Multi-slot Grammar II 
�  <rule id="FIRSTNAME" scope="public"> 

  <one-of> 
    <item> matt<tag>out.firstNameSubslot="matthew";</tag></item> 
    <item> dee <tag> out.firstNameSubslot="dee ";</tag></item> 
    <item> jon <tag> out.firstNameSubslot="jon ";</tag></item> 
    <item> george <tag>out.firstNameSubslot="george ";</tag></item> 
    <item> billy <tag> out.firstNameSubslot="billy ";</tag></item> 
  </one-of> 
  </rule> 
 
  <rule id="MIDDLENAME" scope="public"> 
  <one-of> 
    <item> bon <tag>out.middleNameSubslot="bon ";</tag></item> 
    <item> double ya <tag> out.middleNameSubslot="w ";</tag></item> 
    <item> dee <tag> out.middleNameSubslot="dee ";</tag></item> 
  </one-of> 
  </rule> 
 
  <rule id="LASTNAME" scope="public"> 
  <one-of> 
    <item> henry <tag> out.lastNameSubslot="henry "; </tag></item> 
    <item> ramone <tag> out.lastNameSubslot="dee ";  </tag></item> 
    <item> jovi <tag> out.lastNameSubslot="jovi ";  </tag></item> 
    <item> bush <tag> out.lastNameSubslot=""bush ";  </tag></item> 
    <item> williams <tag> out.lastNameSubslot="williams "; </tag></item> 
  </one-of> 
  </rule> 
 
</grammar> 
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Augmenting VoiceXML 
�  Don’t write  XML directly 

�  Use php or other system to generate VoiceXML 
�  Used in ‘Let’s Go Dude’ bus info system 

�  Pass input to other web services 
�  i.e. to RESTful services 

�  Access web-based audio for prompts 



Advanced Dialog Models 
�  Information State Models 

�  Statistical Dialog Models 



Information State Models 
�  Challenges in dialog management 

�  Difficult to evaluate 
�  Hard to isolate from implementations 

�  Integration inhibits portability 

�  Wide gap between theoretical and practical models 
�  Theoretical: logic-based, BDI, plan-based, attention/

intention 

�  Practical: mostly finite-state or frame-based 

�  Even if  theory-consistent, many possible implementations 

�  Implementation dominates 



Why the Gap? 
�  Theories hard to implement 

�  Underspecified 

�  Overly complex, intractable 

�  e.g. inferring all user 
intents 

�  Theories hard to compare 
�  Employ diff’t basic units 

�  Disagree on basic structure 

�  Implementation is hard 
�  Driven by technical 

limitations, optimizations 

�  Driven by specific tasks 

�  Most approaches simplistic 
�  Not focused on model 

details 



Information State Approach 
�  Approach to formalizing dialog theories 

�  Toolkit to support implementation (Trindikit) 
�  Designed to abstract out dialog theory components 

�  Example systems & related tools 



Information State Theory of  
Dialog 

�  Components: 
�  Informational components: 

�  Common context and internal models (belief, goals, etc) 
�  Formal representations: 

�  Dialog moves: recognition and generation 
�  Trigger state updates 

�  Update rules: 
�  Describe update given current state, moves, etc 

�  Update strategy: 
�  Method for selecting rules if  more than one applies 

�  Simple or complex 



Example Dialog 
�  S: Welcome to the travel agency! 
�  U:  flights to paris 
�  S: Okay, you want to know about price. A flight. To 

Paris. Let’s see.  What city do you want to go from? 



Example Update Rule 



Implementation 
�  Dialog Move Engine (DME) 

�  Implements an information state dialog model 
�  Observes/interprets moves 
�  Updates information state based on moves 
�  Generates new moves consistent with state 

�  Full system requires: DME+ 
�  Input/output components 
�  Interpretation: determine what move made 
�  Generation: produce output for ‘next move’ 
�  Control system to manage components 



Trindikit Architecture 



Multi-level Architecture 
�  Separates types of  design expertise, knowledge 

�  Domain & language resources à Domain system 

�  Dialog theory      à Abstract DME 
�  IS, update rules, etc 

�  Software Engineering     à Trindikit 
�  basic types, control 



Statistical Dialog 
Management 



New Idea: Modeling a dialogue 
system as a probabilistic agent 

�  A conversational agent can be characterized by: 
�  The current knowledge of  the system 

�  A set of  states S the agent can be in 

�  a set of  actions A the agent can take 
�  A goal G, which implies 

�  A success metric that tells us how well the agent 
achieved its goal 

�  A way of  using this metric to create a strategy or policy 
π for what action to take in any particular state. 

4/23/13 61 Speech and Language Processing -- Jurafsky and Martin   



What do we mean by 
actions A and policies π? 

�  Kinds of  decisions a conversational agent needs to 
make: 
�  When should I ground/confirm/reject/ask for 

clarification on what the user just said? 
�  When should I ask a directive prompt, when an 

open prompt? 
�  When should I use user, system, or mixed 

initiative? 

4/23/13 62 Speech and Language Processing -- Jurafsky and Martin   



A threshold is a human-
designed policy! 

�  Could we learn what the right action is 
�  Rejection 
�  Explicit confirmation 
�  Implicit confirmation 
�  No confirmation 

�  By learning a policy which,  
�  given various information about the current state, 
�  dynamically chooses the action which maximizes 

dialogue success 

4/23/13 63 Speech and Language Processing -- Jurafsky and Martin   



Another strategy decision 
�  Open versus directive prompts 

�  When to do mixed initiative 

�  How we do this optimization? 

�  Markov Decision Processes 

4/23/13 64 Speech and Language Processing -- Jurafsky and Martin   



Review: Open vs. 
Directive Prompts 

�  Open prompt 
�  System gives user very few constraints 

�  User can respond how they please: 
�  “How may I help you?” “How may I direct your call?” 

�  Directive prompt 
�  Explicit instructs user how to respond 

�  “Say yes if  you accept the call; otherwise, say no” 

4/23/13 65 Speech and Language Processing -- Jurafsky and Martin   



Review: Restrictive vs. 
Non-restrictive gramamrs 
�  Restrictive grammar 

�  Language model which strongly constrains the ASR 
system, based on dialogue state 

�  Non-restrictive grammar 
�  Open language model which is not restricted to a 

particular dialogue state 

4/23/13 66 Speech and Language Processing -- Jurafsky and Martin   



Kinds of  Initiative 
�  How do I decide which of these initiatives to use at 

each point in the dialogue? 

Grammar Open Prompt Directive Prompt 

Restrictive Doesn’t make sense System Initiative 

Non-restrictive User Initiative Mixed Initiative 

4/23/13 67 Speech and Language Processing -- Jurafsky and Martin   



Modeling a dialogue system 
as a probabilistic agent 

�  A conversational agent can be characterized by: 
�  The current knowledge of  the system 

�  A set of  states S the agent can be in 
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Modeling a dialogue system 
as a probabilistic agent 

�  A conversational agent can be characterized by: 
�  The current knowledge of  the system 

�  A set of  states S the agent can be in 

�  a set of  actions A the agent can take 
�  A goal G, which implies 

�  A success metric that tells us how well the agent 
achieved its goal 

�  A way of  using this metric to create a strategy or policy 
π for what action to take in any particular state. 
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Goals are not enough 
�  Goal: user satisfaction 

�  OK, that’s all very well, but 
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Goals are not enough 
�  Goal: user satisfaction 

�  OK, that’s all very well, but 
�  Many things influence user satisfaction 

�  We don’t know user satisfaction til after the dialogue 
is done 

�  How do we know, state by state and action by action, 
what the agent should do? 

�  We need a more helpful metric that can apply to 
each state 

4/24/13 72 Speech and Language Processing -- Jurafsky and Martin   



Utility 
�  A utility function  

�  maps a state or state sequence  

�  onto a real number  
�  describing the goodness of  that state  

�  I.e. the resulting “happiness” of  the agent 
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Utility 
�  A utility function  

�  maps a state or state sequence  

�  onto a real number  
�  describing the goodness of  that state  

�  I.e. the resulting “happiness” of  the agent 

�  Principle of  Maximum Expected Utility: 
�  A rational agent should choose an action that 

maximizes the agent’s expected utility 

4/24/13 74 Speech and Language Processing -- Jurafsky and Martin   



Maximum Expected Utility 
�  Principle of  Maximum Expected Utility: 

�  A rational agent should choose an action that maximizes 
the agent’s expected utility 

�  Action A has possible outcome states Resulti(A) 

�  E: agent’s evidence about current state of  world 

�  Before doing A, agent estimates prob of  each 
outcome 
�  P(Resulti(A)|Do(A),E) 

�  Thus can compute expected utility: 

EU(A | E) = P(Resulti (A) |Do(A),E)U(Resulti (A)
i
∑ )

4/23/13 75 Speech and Language Processing -- Jurafsky and Martin   



Utility (Russell and 
Norvig) 

4/23/13 76 Speech and Language Processing -- Jurafsky and Martin   



Markov Decision Processes 
�  Or MDP 

�  Characterized by: 
�  a set of  states S an agent can be in 

�  a set of  actions A the agent can take 
�  A reward r(a,s) that the agent receives for taking an 

action in a state 

4/23/13 77 Speech and Language Processing -- Jurafsky and Martin   



A brief tutorial example 
�  Levin et al (2000) 

�  A Day-and-Month dialogue system 

�  Goal: fill in a two-slot frame: 
�  Month: November 
�  Day: 12th 

�  Via the shortest possible interaction with user 

4/23/13 78 Speech and Language Processing -- Jurafsky and Martin   



What is a state? 
�  In principle, MDP state could include any possible 

information about dialogue 
�  Complete dialogue history so far 

4/23/13 79 Speech and Language Processing -- Jurafsky and Martin   



What is a state? 
�  In principle, MDP state could include any possible 

information about dialogue 
�  Complete dialogue history so far 

�  Usually use a much more limited set 
�  Values of  slots in current frame 
�  Most recent question asked to user 
�  Users most recent answer 
�  ASR confidence 
�  etc 

4/24/13 80 Speech and Language Processing -- Jurafsky and Martin   



State in the Day-and-Month 
example 

�  Values of  the two slots day and month. 

�  Total: 
�  2 special initial states si and sf. 
�  365 states with a day and month 
�  1 state for leap year  
�  12 states with a month but no day 
�  31 states with a day but no month 
�  411 total states 
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Actions in MDP models of 
dialogue 
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Actions in MDP models of 
dialogue 

�  Speech acts! 
�  Ask a question 

�  Explicit confirmation 
�  Rejection 

�  Give the user some database information 
�  Tell the user their choices 

�  Do a database query 
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Actions in the Day-and-
Month example 

�  ad: a question asking for the day 

�  am: a question asking for the month 

�  adm: a question asking for the day+month 

�  af: a final action submitting the form and 
terminating the dialogue 
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A simple reward function 
�  For this example, let’s use a cost function 

�  A cost function for entire dialogue 

�  Let 
�  Ni=number of  interactions (duration of  dialogue) 
�  Ne=number of  errors in the obtained values (0-2) 
�  Nf=expected distance from goal 

�  (0 for complete date, 1 if  either data or month are missing, 
2 if  both missing) 

�  Then (weighted) cost is: 

�  C = wi×Ni + we×Ne + wf×Nf 
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2 possible policies 

Po=probability of  error in open prompt 

Pd=probability of  error in directive prompt 

4/23/13 86 Speech and Language Processing -- Jurafsky and Martin   



2 possible policies 
Strategy 1 is better than strategy 
2 when  
improved error rate justifies 
longer interaction: 

€ 

po − pd >
wi

2we
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That was an easy 
optimization 

�  Only two actions, only tiny # of policies 

�  In general, number of actions, states, policies is quite 
large 

�  So finding optimal policy π* is harder 

�  We need reinforcement learning 

�  Back to MDPs: 
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MDP 
�  We can think of a dialogue as a trajectory in state 

space 

�  The best policy π* is the one with the greatest 
expected reward over all trajectories 

�  How to compute a reward for a state sequence? 
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Reward for a state 
sequence 

�  One common approach: discounted rewards 

�  Cumulative reward Q of a sequence is discounted sum 
of utilities of individual states 

�  Discount factor γ between 0 and 1 

�  Makes agent care more about current than future 
rewards; the more future a reward, the more 
discounted its value 
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The Markov assumption 
�  MDP assumes that state transitions are Markovian 

€ 

P(st+1 | st ,st−1,...,so,at ,at−1,...,ao) = PT (st+1 | st ,at )
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Expected reward for an 
action 

�  Expected cumulative reward Q(s,a) for taking a 
particular action from a particular state can be 
computed by Bellman equation: 

�  Expected cumulative reward for a given state/action 
pair is: 
�  immediate reward for current state 
�  + expected discounted utility of all possible next states s’ 
�  Weighted by probability of moving to that state s’ 
�  And assuming once there we take optimal action a’ 
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What we need for Bellman 
equation 

�  A model of p(s’|s,a) 

�  Estimate of R(s,a) 

�  How to get these? 
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What we need for Bellman 
equation 

�  A model of p(s’|s,a) 

�  Estimate of R(s,a) 

�  How to get these? 

�  If we had labeled training data 
�  P(s’|s,a) = C(s,s’,a)/C(s,a) 
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What we need for Bellman 
equation 

�  A model of p(s’|s,a) 

�  Estimate of R(s,a) 

�  How to get these? 

�  If we had labeled training data 
�  P(s’|s,a) = C(s,s’,a)/C(s,a) 

�  If we knew the final reward for whole dialogue 
R(s1,a1,s2,a2,…,sn) 

�  Given these parameters, can use value iteration 
algorithm to learn Q values (pushing back reward 
values over state sequences) and hence best policy 

4/24/13 95 Speech and Language Processing -- Jurafsky and Martin   



Final reward 
�  What is the final reward for whole dialogue 

R(s1,a1,s2,a2,…,sn)? 

�  This is what our automatic evaluation metric PARADISE 
computes! 

�  The general goodness of a whole dialogue!!!!! 
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How to estimate p(s’|s,a) 
without labeled data 
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How to estimate p(s’|s,a) 
without labeled data 

�  Have random conversations with real people 
�  Carefully hand-tune small number of states and 

policies 
�  Then can build a dialogue system which explores state 

space by generating a few hundred random 
conversations with real humans 

�  Set probabilities from this corpus 
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How to estimate p(s’|s,a) 
without labeled data 

�  Have random conversations with real people 
�  Carefully hand-tune small number of states and policies 
�  Then can build a dialogue system which explores state 

space by generating a few hundred random conversations 
with real humans 

�  Set probabilities from this corpus 

�  Have random conversations with simulated people 
�  Now you can have millions of conversations with simulated 

people 
�  So you can have a slightly larger state space 
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An example 
�  Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing 

Dialogue Management with Reinforcement Learning: Experiments 
with the NJFun System. Journal of AI Research. 

�  NJFun system, people asked questions about 
recreational activities in New Jersey 

�  Idea of paper: use reinforcement learning to make a 
small set of optimal policy decisions 
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Very small # of states and 
acts 

�  States: specified by values of 8 features 
�  Which slot in frame is being worked on (1-4) 
�  ASR confidence value (0-5) 
�  How many times a current slot question had been asked 
�  Restrictive vs. non-restrictive grammar 
�  Result: 62 states 

�  Actions: each state only 2 possible actions 
�  Asking questions: System versus user initiative 
�  Receiving answers: explicit versus no confirmation. 
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Ran system with real 
users 

�  311 conversations 

�  Simple binary reward function 
�  1 if competed task (finding museums, theater, winetasting in NJ area) 
�  0 if not 

�  System learned good dialogue strategy: Roughly 
�  Start with user initiative 
�  Backoff to mixed or system initiative when re-asking for an attribute 

�  Confirm only a lower confidence values 

4/23/13 102 Speech and Language Processing -- Jurafsky and Martin   



State of the art 
�  Only a few such systems 

�  From (former) ATT Laboratories researchers, now 
dispersed 

�  And Cambridge UK lab 

�  Hot topics: 
�  Partially observable MDPs (POMDPs) 
�  We don’t REALLY know the user’s state (we only know 

what we THOUGHT the user said) 
�  So need to take actions based on our BELIEF , I.e. a 

probability distribution over states rather than the “true 
state” 
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Summary 
�  Utility-based conversational agents 

�  Policy/strategy for: 
�  Confirmation 
�  Rejection 
�  Open/directive prompts 
�  Initiative 
�  +????? 

�  MDP 
�  POMDP 
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Learning Probabilistic 
Slot Filling 

�  Goal:  Use machine learning to map from 
recognizer strings to semantic slots and fillers 
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Learning Probabilistic 
Slot Filling 

�  Goal:  Use machine learning to map from 
recognizer strings to semantic slots and fillers 

�  Motivation: 
�  Improve robustness – fail-soft 
�  Improve ambiguity handling – probabilities 

�  Improve adaptation – train for new domains, apps 

�  Many alternative classifier models 
�  HMM-based, MaxEnt-based 
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HMM-Based Slot Filling 
�  Find best concept sequence C given words W 

�  C*= argmax P(C|W) 

�     = argmax P(W|C)P(C)/P(W) 

�     = argmax P(W|C)P(C) 

�  Assume limited M-concept history, N-gram words 
�  =  

P(wi
i=2

N

∏ |wi−1...wi−N+1,ci ) P(ci
i=2

N

∏ | ci−1...ci−M+1)



Probabilistic Slot Filling 
�  Example HMM 


