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2 possible policies 
Strategy 1 is better than strategy 
2 when  
improved error rate justifies 
longer interaction: 
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That was an easy 
optimization 

�  Only two actions, only tiny # of policies 

�  In general, number of actions, states, policies is quite 
large 

�  So finding optimal policy π* is harder 

�  We need reinforcement learning 

�  Back to MDPs: 
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MDP 
�  We can think of a dialogue as a trajectory in state 

space 

�  The best policy π* is the one with the greatest 
expected reward over all trajectories 

�  How to compute a reward for a state sequence? 
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Reward for a state 
sequence 

�  One common approach: discounted rewards 

�  Cumulative reward Q of a sequence is discounted sum 
of utilities of individual states 

�  Discount factor γ between 0 and 1 

�  Makes agent care more about current than future 
rewards; the more future a reward, the more 
discounted its value 
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The Markov assumption 
�  MDP assumes that state transitions are Markovian 

€ 

P(st+1 | st ,st−1,...,so,at ,at−1,...,ao) = PT (st+1 | st ,at )
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Expected reward for an 
action 

�  Expected cumulative reward Q(s,a) for taking a 
particular action from a particular state can be 
computed by Bellman equation: 

�  Expected cumulative reward for a given state/action 
pair is: 
�  immediate reward for current state 
�  + expected discounted utility of all possible next states s’ 
�  Weighted by probability of moving to that state s’ 
�  And assuming once there we take optimal action a’ 
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What we need for Bellman 
equation 

�  A model of p(s’|s,a) 

�  Estimate of R(s,a) 

�  How to get these? 
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�  How to get these? 

�  If we had labeled training data 
�  P(s’|s,a) = C(s,s’,a)/C(s,a) 

4/30/13 9 Speech and Language Processing -- Jurafsky and Martin   



What we need for Bellman 
equation 

�  A model of p(s’|s,a) 

�  Estimate of R(s,a) 

�  How to get these? 

�  If we had labeled training data 
�  P(s’|s,a) = C(s,s’,a)/C(s,a) 

�  If we knew the final reward for whole dialogue 
R(s1,a1,s2,a2,…,sn) 

�  Given these parameters, can use value iteration 
algorithm to learn Q values (pushing back reward 
values over state sequences) and hence best policy 

4/30/13 10 Speech and Language Processing -- Jurafsky and Martin   



Final reward 
�  What is the final reward for whole dialogue 

R(s1,a1,s2,a2,…,sn)? 

�  This is what our automatic evaluation metric PARADISE 
computes! 

�  The general goodness of a whole dialogue!!!!! 
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How to estimate p(s’|s,a) 
without labeled data 
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How to estimate p(s’|s,a) 
without labeled data 

�  Have random conversations with real people 
�  Carefully hand-tune small number of states and 

policies 
�  Then can build a dialogue system which explores state 

space by generating a few hundred random 
conversations with real humans 

�  Set probabilities from this corpus 
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How to estimate p(s’|s,a) 
without labeled data 

�  Have random conversations with real people 
�  Carefully hand-tune small number of states and policies 
�  Then can build a dialogue system which explores state 

space by generating a few hundred random conversations 
with real humans 

�  Set probabilities from this corpus 

�  Have random conversations with simulated people 
�  Now you can have millions of conversations with simulated 

people 
�  So you can have a slightly larger state space 
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An example 
�  Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing 

Dialogue Management with Reinforcement Learning: Experiments 
with the NJFun System. Journal of AI Research. 

�  NJFun system, people asked questions about 
recreational activities in New Jersey 

�  Idea of paper: use reinforcement learning to make a 
small set of optimal policy decisions 
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Very small # of states and 
acts 

�  States: specified by values of 8 features 
�  Which slot in frame is being worked on (1-4) 
�  ASR confidence value (0-5) 
�  How many times a current slot question had been asked 
�  Restrictive vs. non-restrictive grammar 
�  Result: 62 states 

�  Actions: each state only 2 possible actions 
�  Asking questions: System versus user initiative 
�  Receiving answers: explicit versus no confirmation. 
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Ran system with real 
users 

�  311 conversations 

�  Simple binary reward function 
�  1 if competed task (finding museums, theater, winetasting in NJ area) 
�  0 if not 

�  System learned good dialogue strategy: Roughly 
�  Start with user initiative 
�  Backoff to mixed or system initiative when re-asking for an attribute 

�  Confirm only a lower confidence values 
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State of the art 
�  Only a few such systems 

�  From (former) ATT Laboratories researchers, now 
dispersed 

�  And Cambridge UK lab 

�  Hot topics: 
�  Partially observable MDPs (POMDPs) 
�  We don’t REALLY know the user’s state (we only know 

what we THOUGHT the user said) 
�  So need to take actions based on our BELIEF , I.e. a 

probability distribution over states rather than the “true 
state” 
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Summary 
�  Utility-based conversational agents 

�  Policy/strategy for: 
�  Confirmation 
�  Rejection 
�  Open/directive prompts 
�  Initiative 
�  +????? 

�  MDP 
�  POMDP 
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Roadmap 
�  Dialog acts 

�  Annotation 
�  Basic dialog acts & tagsets 

�  Reliability 

�  Recognition 
�  Approaches & information 

�  N-gram DA tagging 

�  Feature Latent Semantic Analysis 

�  SVMs with HMMs 
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Dialogue Acts 
�  Extension of  speech acts 

�  Adds structure related to conversational phenomena 
�  Grounding, adjacency pairs, etc 

�  Many proposed tagsets 
�  Verbmobil: acts specific to meeting sched domain 
�  DAMSL: Dialogue Act Markup in Several Layers 

�  Forward looking functions: speech acts 

�  Backward looking function: grounding, answering 

�  Conversation acts: 
�  Add turn-taking and argumentation relations 



Verbmobil DA 
�  18 high level tags 



Maptask: 
Dialog act tagging & analysis 
�  Goal:  

�  Dialog structure coding that is: 
�  Task-independent: applicable to human or machine 

�  Linked to higher-levels of  discourse structure 

�  Generic: Interoperate with other models 

�  Overall model:  3 levels 
�  Transactions: Subdialog accomplishing major task step 
�  Games: Discourse segments of  initiations/responses 
�  Moves: Individual initiations or responses 

�  Adjacency pairs 



Dialog Acts 
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Maptask Scenario 
�  Two participants: 

�  Giver and follower 

�  Each has a map, differing in detail 
�  Giver has a route 

�  Goal: Follower replicates route on own map 
�  Requires clarifications, naming, etc 



Dialog Act Inventory 
�  Instruct: command other to do something 

�  Explain: state information not explicitly requested 

�  Check: ask for confirmation 

�  Align: check other’s attn, agreement, readiness: Ok? 

�  Query YN; Query-W: yes/no, other question 

�   Acknowledge: indicate heard and understood 

�  Reply-Y; Reply-N; Reply-W:  

�  Clarify:  reply beyond what was asked 

�  Ready: after completion of  one game, before start of  other 
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� How good is tagging? A tagset? 
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Interrater Agreement 
�  How good is tagging? A tagset? 

�  Criterion: How accurate/consistent is it? 

�  Stability:  
�  Is the same rater self-consistent? 

�  Reproducibility:  
�  Do multiple annotators agree with each other? 

�  Accuracy: 
�  How well do coders agree with some “gold standard”? 
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Agreement Measure 
�  Kappa (K) coefficient 

�  Applies to classification into discrete categories 

�  Corrects for chance agreement 
�  K<0 : agree less than expected by chance 

�  Quality intervals:  
�  >= 0.8: Very good; 0.6<K<0.8: Good, etc 

�  Maptask: K=0.92 on segmentation, 
�  K = 0.83 on move labels – 13 tags 



Dialogue Act Interpretation 
�  Automatically tag utterances in dialogue 
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Plan-inference-based 

�  Classic AI (BDI) planning framework 
�  Model Belief, Knowledge, Desire 

�  Formal definition with predicate calculus 
�  Axiomatization of  plans and actions as well 
�  STRIPS-style:  Preconditions, Effects, Body 

�  Rules for plan inference 
 
 



Plan-inference-based 

�  Classic AI (BDI) planning framework 
�  Model Belief, Knowledge, Desire 

�  Formal definition with predicate calculus 
�  Axiomatization of  plans and actions as well 
�  STRIPS-style:  Preconditions, Effects, Body 

�  Rules for plan inference 

�  Elegant, but.. 
�  Labor-intensive rule, KB, heuristic development 
�  Effectively AI-complete 
 
 



Cue-based Interpretation 
�  Employs sets of  features to identify 

�  Words and collocations: Please -> request 
�  Prosody: Rising pitch -> yes/no question 
�  Conversational structure: prior act 

�  Example: Check:  
�  Syntax: tag question “,right?” 
�  Syntax + prosody: Fragment with rise 
�  N-gram: argmax d P(d)P(W|d) 

�  So you, sounds like, etc 
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Dialogue Act Recognition 
�  How can we classify dialogue acts? 

�  Sources of  information: 
�  Word information:  

�  Please, would you: request; are you: yes-no question 
�  N-gram grammars 

�  Prosody: 
�  Final rising pitch: question; final lowering: statement 
�  Reduced intensity: Yeah: agreement vs backchannel 

�  Adjacency pairs: 
�  Y/N question, agreement vs Y/N question, backchannel 
�  DA bi-grams 
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Task & Corpus 
�  Goal:  

�  Identify dialogue acts in conversational speech 

�  Spoken corpus: Switchboard 
�  Telephone conversations between strangers 
�  Not task oriented; topics suggested 
�  1000s of  conversations 

�   recorded, transcribed, segmented 



Dialogue Act Tagset 
�  Cover general conversational dialogue acts 

�  No particular task/domain constraints 



Dialogue Act Tagset 
�  Cover general conversational dialogue acts 

�  No particular task/domain constraints 

�  Original set: ~50 tags 
�   Augmented with flags for task, conv mgmt 

�  220 tags in labeling: some rare 



Dialogue Act Tagset 
�  Cover general conversational dialogue acts 

�  No particular task/domain constraints 

�  Original set: ~50 tags 
�   Augmented with flags for task, conv mgmt 

�  220 tags in labeling: some rare 

�  Final set: 42 tags, mutually exclusive 
�  SWBD-DAMSL 
�  Agreement: K=0.80 (high) 



Dialogue Act Tagset 
�  Cover general conversational dialogue acts 

�  No particular task/domain constraints 

�  Original set: ~50 tags 
�   Augmented with flags for task, conv mgmt 

�  220 tags in labeling: some rare 

�  Final set: 42 tags, mutually exclusive 
�  SWBD-DAMSL 
�  Agreement: K=0.80 (high) 

�  1,155 conv labeled: split into train/test 



Common Tags 

�  Statement & Opinion: declarative +/- op 

�  Question: Yes/No&Declarative: form, force 

�  Backchannel: Continuers like uh-huh, yeah 

�  Turn Exit/Adandon: break off, +/- pass 

�  Answer : Yes/No, follow questions 

�  Agreement: Accept/Reject/Maybe 
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Probabilistic Dialogue 
Models 

� HMM dialogue models 
�  States = Dialogue acts; Observations: Utterances 

�  Assume decomposable by utterance 

�  Evidence from true words, ASR words, prosody 

d*= argmax
d

P(d | o) = argmax
d

P(o | d)P(d)
P(o)

= argmax
d

P(o | d)P(d)

P(o | d) = P( f | d)P(W | d)

P(W | d) = P(wi
i=2

N

∏ |wi−1,wi−2...wi−N+1,d)

d*= argmax
d

P(d | dt−1)P( f | d)P(W | d)



DA Classification - Prosody 
�  Features: 

�  Duration, pause, pitch, energy, rate, gender 
�  Pitch accent, tone 

�  Results: 
�  Decision trees: 5 common classes   

�  45.4% - baseline=16.6% 



Prosodic Decision Tree 



DA Classification -Words 
�  Words 

�  Combines notion of  discourse markers and 
collocations:  
�  e.g. uh-huh=Backchannel 

�  Contrast: true words, ASR 1-best, ASR n-best 

�  Results: 
�  Best: 71%- true words, 65% ASR 1-best 



DA Classification - All 
�  Combine word and prosodic information 

�  Consider case with ASR words and acoustics 



DA Classification - All 
�  Combine word and prosodic information 

�  Consider case with ASR words and acoustics 

�  Prosody classified by decision trees 
�  Incorporate decision tree posteriors in model for P(f|d) 



DA Classification - All 
�  Combine word and prosodic information 

�  Consider case with ASR words and acoustics 

�  Prosody classified by decision trees 
�  Incorporate decision tree posteriors in model for P(f|d) 

�  Slightly better than raw ASR 

d*= P(d | dt−1)
P(d | f )
P(d)

P(wi |wi−1
i=2

N

∏ ...wi−N+1,d)
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Integrated Classification 

�  Focused analysis 
�  Prosodically disambiguated classes 

�  Statement/Question-Y/N and Agreement/Backchannel 
�  Prosodic decision trees for agreement vs backchannel 

�  Disambiguated by duration and loudness 

�  Substantial improvement for prosody+words 
�  True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7 
�  ASR words: S/Q: 75.4%->79.8; A/B: 78.2%->81.7 

�  More useful when recognition is iffy 



Dialog Act Tagging with  
Feature Latent Semantic Analysis 
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Latent Semantic Analysis 
(LSA) 

l  Dumais, Deerwester (1990) 

l  Latent semantic classes (topics) 

l  Input: term-document matrix D 

documents are vectors in the vocabulary space 

l  Output: modified matrix D' 

documents are vectors in the latent semantic 
space 

l  Use D' for classification 
FLSA slides courtesy Irena Matveeva 
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Latent Semantic Analysis 
(LSA) 

l  D=USVT 

d=(w1, ..., wN) 

l  D'=USkV
T 

d=(z1,...,zk)   k<<N 

l  min || D – D'||2
F =∑ (d[i][j]-d'[i][j])2 

 





LSA uses co-occurrence 
statistics 
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Feature LSA (FLSA) 
l  Dialog acts are treated as documents 

l  Compute LSA representations for DA's 

l  Use features other than terms in the DA vectors: 
-  POS, syntactic information 
-  previous DA, game 

l  Compute LSA on the DA vectors extended with 
new features - FLSA 



Corpus 1: CallHome 
Spanish 

l  120 telephone conversations in Spanish (family, 
friends) 
l  12066 unique words, 44628 DA's 

l  232 tags – unified in 37, 10, 8 groups 



Corpus 1: CallHome 
Spanish 

l  120 telephone conversations in Spanish (family, 
friends) 
l  12066 unique words, 44628 DA's 

l  232 tags – unified in 37, 10, 8 groups 

l  Tags: 
-  DA (statement, question, answer...) 
-  Move (initiative, response, feedback) 

-  Game (information, directive) 
-  Activities (gossip, argue) 



Corpus 2: MapTask 
l  128 dialogs, map task experiment 

l  1835 unique words, 27084 DA's 

l  Tags: 
-  DA's (=moves) (instruct, explain,...) 
-  Games (clarification, ...) 
-  Transaction (normal, review, overview, irrelevant) 
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l  Computer mediated tutoring dialogs between a 

tutor and a student 
l  23 dialogs 

l  670 unique words, 660 DA’s 



Corpus 3: DIAG-NLP 
l  Computer mediated tutoring dialogs between a 

tutor and a student 
l  23 dialogs 

l  670 unique words, 660 DA's 

l  Tags: 
-  4 DA's (problem solving, judgment, domain 

knowledge, other) 

-  Consult Type (type of  student query) 



New Features 
l  POS, SRule (declarative, Wh-question) 

l  Duration 

l  Speaker (MapTask: Giver, Follower) 

l  Previous DA 

l  Game 

l  Initiative 

l  Combination 



Performance Comparison 
Corpus   Baseline  LSA       FLSA  Best other  
 
CallHome37   42.68%  65.36%  74.87%   76.20%  
 
CallHome10   42.68%   68.91%  78.88%  76.20%  
 
MapTask     20.69%    42.77%    73.91%  62.10%  
 
DIAG-NLP     43.64%     75.73%   74.81%   n.a. 
 
 
Baseline is picking the most frequent DA in each corpus 
LSA, FLSA – classification using the training DA vectors 
 



Features  Contribution 
l  Features that did not help 

-  POS 

-  SRule 
-  Previous DA 



Features  Contribution 
l  Features that did not help 

-  POS 

-  SRule 
-  Previous DA 

l  Features that helped 
-  Game 

-  Speaker 
-  Initiative 
-  Combinations of  these 



MapTask 
MapTask 41.84% SRule 
MapTask 43.28% POS 
MapTask 43.59% Duration 
MapTask 46.91% Speaker 

MapTask 47.09% Previous DA 
MapTask 66.00% Game 
MapTask 69.37% Game+Prev. DA 
MapTask 73.25% Game+Speaker+Prev. DA 

MapTask 73.91% Game+Speaker 

LSA 42.77% 



Comments 
l  Not clear how to interpret LSA in this setting:  

-  classification is done by finding the most similar 
training DA. LSA accounts for semantic similarity.  

-  only works withing the same dataset? 
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Comments 
l  Not clear how to interpret LSA in this setting:  

-  classification is done by finding the most similar 
training DA. LSA accounts for semantic similarity.  

-  only works withing the same dataset? 

l  Features are controversial because the labels are 
not known for new data 

l  “Game” contains a lot of  information about the 
DA's label 

l  Previous DA can be inferred by the system, but 
this feature did not help 



SVMs and HMMs 
for DA Tagging 



Recognizing Maptask Acts 
�  Assume:  

�   Word-level transcription 

�   Segmentation into utterances,  

�  Ground truth DA tags 

�  Goal: Train classifier for DA tagging 
�  Exploit:  

�  Lexical and prosodic cues 

�  Sequential dependencies b/t Das 

�  14810 utts, 13 classes 



Features for Classification 
�  Acoustic-Prosodic Features: 

�  Pitch, Energy, Duration, Speaking rate 
�  Raw and normalized, whole utterance, last 300ms 

�  50 real-valued features 



Features for Classification 
�  Acoustic-Prosodic Features: 

�  Pitch, Energy, Duration, Speaking rate 
�  Raw and normalized, whole utterance, last 300ms 

�  50 real-valued features 

�  Text Features: 
�  Count of  Unigram, bi-gram, tri-grams 

�  Appear multiple times 

�  10000 features, sparse 
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�  Support Vector Machines 
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Classification with SVMs 
�  Support Vector Machines 

�  Create n(n-1)/2 binary classifiers 
�  Weight classes by inverse frequency 

�  Learn weight vector and bias, classify by sign 

�  Platt scaling to convert outputs to probabilities 
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Incorporating Sequential 
Constraints 

�  Some sequences of  DA tags more likely: 
�  E.g. P(affirmative after y-n-Q) = 0.5 

�         P(affirmative after other) = 0.05 

�  Learn P(yi|yi-1) from corpus 
�  Tag sequence probabilities 
�  Platt-scaled SVM outputs are P(y|x) 

�  Viterbi decoding to find optimal sequence  



Results 

SVM Only SVM+Seq 

Text Only 58.1 59.1 

Prosody Only 41.4 42.5 

Text+Prosody 61.8 65.5 



Observations 
�  DA classification can work on open domain 

�  Exploits word model, DA context, prosody 

�  Best results for  prosody+words 
�  Words are quite effective alone – even ASR 

�  Questions:  



Observations 
�  DA classification can work on open domain 

�  Exploits word model, DA context, prosody 

�  Best results for  prosody+words 
�  Words are quite effective alone – even ASR 

�  Questions:  
�  Whole utterance models? – more fine-grained 

�  Longer structure, long term features 


