Dialog Management & Dialog Acts

Ling575 Spoken Dialog May 1, 2013

2 possible policies

Strategy 1 is better than strategy 2 when improved error rate justifies longer interaction: Policy 1 (directive)

2

That was an easy optimization

- Only two actions, only tiny # of policies
- In general, number of actions, states, policies is quite large
- So finding optimal policy π^* is harder
- We need reinforcement learning
- Back to MDPs:

MDP

• We can think of a dialogue as a trajectory in state space

$$s_1 \rightarrow_{a1,r1} s_2 \rightarrow_{a2,r2} s_3 \rightarrow_{a3,r3} \cdots$$

- The best policy π^* is the one with the greatest expected reward over all trajectories
- How to compute a reward for a state sequence?

Reward for a state sequence

- One common approach: discounted rewards
- Cumulative reward Q of a sequence is discounted sum of utilities of individual states

$$Q([s_0, a_0, s_1, a_1, s_2, a_2 \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots, q_n$$

 Makes agent care more about current than future rewards; the more future a reward, the more discounted its value

The Markov assumption

MDP assumes that state transitions are Markovian

$$P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_o, a_t, a_{t-1}, \dots, a_o) = P_T(s_{t+1} \mid s_t, a_t)$$

Expected reward for an action

 Expected cumulative reward Q(s,a) for taking a particular action from a particular state can be computed by Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

- Expected cumulative reward for a given state/action pair is:
 - immediate reward for current state
 - + expected discounted utility of all possible next states s'
 - Weighted by probability of moving to that state s'
 - And assuming once there we take optimal action a'

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?

8

4/30/13

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s' |s,a) = C(s,s',a)/C(s,a)

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s' |s,a) = C(s,s',a)/C(s,a)
- If we knew the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)
- Given these parameters, can use value iteration algorithm to learn Q values (pushing back reward values over state sequences) and hence best policy

Speech and Language Processing -- Jurafsky and Martin

4/30/13

Final reward

- What is the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)?
- This is what our automatic evaluation metric PARADISE computes!
- The general goodness of a whole dialogue!!!!!

How to estimate p(s'|s,a) without labeled data

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus
- Have random conversations with simulated people
 - Now you can have millions of conversations with simulated people
 - So you can have a slightly larger state space

An example

• Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. Journal of AI Research.

- NJFun system, people asked questions about recreational activities in New Jersey
- Idea of paper: use reinforcement learning to make a small set of optimal policy decisions

Very small # of states and acts

- **States**: specified by values of 8 features
 - Which slot in frame is being worked on (1-4)
 - ASR confidence value (0-5)
 - How many times a current slot question had been asked
 - Restrictive vs. non-restrictive grammar
 - Result: 62 states
- Actions: each state only 2 possible actions
 - Asking questions: System versus user initiative
 - Receiving answers: explicit versus no confirmation.

4/30/13

Ran system with real users

- 311 conversations
- Simple binary reward function
 - 1 if competed task (finding museums, theater, winetasting in NJ area)
 - 0 if not
- System learned good dialogue strategy: Roughly
 - Start with user initiative
 - Backoff to mixed or system initiative when re-asking for an attribute
 - Confirm only a lower confidence values

State of the art

- Only a few such systems
 - From (former) ATT Laboratories researchers, now dispersed
 - And Cambridge UK lab
- Hot topics:
 - Partially observable MDPs (POMDPs)
 - We don't REALLY know the user's state (we only know what we THOUGHT the user said)
 - So need to take actions based on our BELIEF, I.e. a probability distribution over states rather than the "true state"

Summary

- Utility-based conversational agents
 - Policy/strategy for:
 - Confirmation
 - Rejection
 - Open/directive prompts
 - Initiative
 - +?????
 - MDP
 - POMDP

Roadmap

- Dialog acts
 - Annotation
 - Basic dialog acts & tagsets
 - Reliability
 - Recognition
 - Approaches & information
 - N-gram DA tagging
 - Feature Latent Semantic Analysis
 - SVMs with HMMs

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering
 - Conversation acts:
 - Add turn-taking and argumentation relations

Verbmobil DA

• 18 high level tags

Tag	Example
THANK	Thanks
GREET	Hello Dan
INTRODUCE	It's me again
BYE	Allright bye
Request-Comment	How does that look?
SUGGEST	from thirteenth through seventeenth June
Reject	No Friday I'm booked all day
ACCEPT	Saturday sounds fine,
REQUEST-SUGGEST	What is a good day of the week for you?
INIT	I wanted to make an appointment with you
GIVE_REASON	Because I have meetings all afternoon
FEEDBACK	Okay
DELIBERATE	Let me check my calendar here
CONFIRM	Okay, that would be wonderful
CLARIFY	Okay, do you mean Tuesday the 23rd?
DIGRESS	[we could meet for lunch] and eat lots of ice cream
MOTIVATE	We should go to visit our subsidiary in Munich
GARBAGE	Oops, I-

Figure 24.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a total of 43 more specific dialogue acts. Examples are from Jekat et al. (1995).

Maptask:

Dialog act tagging & analysis

- Goal:
 - Dialog structure coding that is:
 - Task-independent: applicable to human or machine
 - Linked to higher-levels of discourse structure
 - Generic: Interoperate with other models
- Overall model: 3 levels
 - Transactions: Subdialog accomplishing major task step
 - Games: Discourse segments of initiations/responses
 - Moves: Individual initiations or responses
 - Adjacency pairs

Maptask Scenario

- Two participants:
 - Giver and follower
- Each has a map, differing in detail
 - Giver has a route
- Goal: Follower replicates route on own map
 - Requires clarifications, naming, etc

Dialog Act Inventory

- Instruct: command other to do something
- Explain: state information not explicitly requested
- Check: ask for confirmation
- Align: check other's attn, agreement, readiness: Ok?
- Query YN; Query-W: yes/no, other question
- Acknowledge: indicate heard and understood
- Reply-Y; Reply-N; Reply-W:
- Clarify: reply beyond what was asked
- Ready: after completion of one game, before start of other

• How good is tagging? A tagset?

- How good is tagging? A tagset?
- Criterion: How accurate/consistent is it?

- How good is tagging? A tagset?
- Criterion: How accurate/consistent is it?
- Stability:
 - Is the same rater self-consistent?

- How good is tagging? A tagset?
- Criterion: How accurate/consistent is it?
- Stability:
 - Is the same rater self-consistent?
- Reproducibility:
 - Do multiple annotators agree with each other?

- How good is tagging? A tagset?
- Criterion: How accurate/consistent is it?
- Stability:
 - Is the same rater self-consistent?
- Reproducibility:
 - Do multiple annotators agree with each other?
- Accuracy:
 - How well do coders agree with some "gold standard"?

Agreement Measure

• Kappa (K) coefficient
- Kappa (K) coefficient
 - Applies to classification into discrete categories

- Kappa (K) coefficient
 - Applies to classification into discrete categories
 - Corrects for chance agreement
 - K<0 : agree less than expected by chance

- Kappa (K) coefficient
 - Applies to classification into discrete categories
 - Corrects for chance agreement
 - K<0 : agree less than expected by chance
 - Quality intervals:
 - >= 0.8: Very good; 0.6<K<0.8: Good, etc</p>

- Kappa (K) coefficient
 - Applies to classification into discrete categories
 - Corrects for chance agreement
 - K<0 : agree less than expected by chance
 - Quality intervals:
 - >= 0.8: Very good; 0.6<K<0.8: Good, etc</p>
- Maptask: K=0.92 on segmentation,
 - K = 0.83 on move labels 13 tags

Dialogue Act Interpretation

• Automatically tag utterances in dialogue

Α	I was wanting to make some arrangements for a trip that I'm going
	to be taking uh to LA uh beginning of the week after next.
B	OK uh let me pull up your profile and I'll be right with you here.
	[pause]
В	And you said you wanted to travel next week?
Α	 Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В		OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α	ACCEPT	Uh yes.

Plan-inference-based

- Classic AI (BDI) planning framework
 - Model Belief, Knowledge, Desire
 - Formal definition with predicate calculus
 - Axiomatization of plans and actions as well
 - STRIPS-style: Preconditions, Effects, Body
 - Rules for plan inference

Plan-inference-based

- Classic AI (BDI) planning framework
 - Model Belief, Knowledge, Desire
 - Formal definition with predicate calculus
 - Axiomatization of plans and actions as well
 - STRIPS-style: Preconditions, Effects, Body
 - Rules for plan inference
- Elegant, but..
 - Labor-intensive rule, KB, heuristic development
 - Effectively Al-complete

Cue-based Interpretation

- Employs sets of features to identify
 - Words and collocations: Please -> request
 - Prosody: Rising pitch -> yes/no question
 - Conversational structure: prior act
- Example: Check:
 - Syntax: tag question ",right?"
 - Syntax + prosody: Fragment with rise
 - N-gram: argmax d P(d)P(W|d)
 - So you, sounds like, etc

- How can we classify dialogue acts?
- Sources of information:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: Yeah: agreement vs backchannel
 - Adjacency pairs:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel
 - Adjacency pairs:
 - Y/N question, agreement vs Y/N question, backchannel
 - DA bi-grams

Task & Corpus

• Goal:

• Identify dialogue acts in conversational speech

Task & Corpus

- Goal:
 - Identify dialogue acts in conversational speech
- Spoken corpus: Switchboard
 - Telephone conversations between strangers
 - Not task oriented; topics suggested
 - 1000s of conversations
 - recorded, transcribed, segmented

- Cover general conversational dialogue acts
 - No particular task/domain constraints

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)
- 1,155 conv labeled: split into train/test

Common Tags

- Statement & Opinion: declarative +/- op
- **Question**: Yes/No&Declarative: form, force
- Backchannel: Continuers like uh-huh, yeah
- Turn Exit/Adandon: break off, +/- pass
- **Answer :** Yes/No, follow questions
- Agreement: Accept/Reject/Maybe

• HMM dialogue models

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^{*} = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$
$$P(W \mid d) = \prod_{i=2}^{N} P(w_{i} \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

$$P(o \mid d) = P(f \mid d)P(W \mid d)$$

$$P(W \mid d) = \prod_{i=2}^{N} P(w_i \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid d_{t-1})P(f \mid d)P(W \mid d)$$

DA Classification - Prosody

• Features:

- Duration, pause, pitch, energy, rate, gender
 - Pitch accent, tone
- Results:
 - Decision trees: 5 common classes
 - 45.4% baseline=16.6%

Prosodic Decision Tree

DA Classification - Words

- Words
 - Combines notion of discourse markers and collocations:
 - e.g. uh-huh=Backchannel
 - Contrast: true words, ASR 1-best, ASR n-best
- Results:
 - Best: 71%- true words, 65% ASR 1-best

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)
DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)

$$d^* = P(d \mid d_{t-1}) \frac{P(d \mid f)}{P(d)} \prod_{i=2}^{N} P(w_i \mid w_{i-1}...w_{i-N+1}, d)$$

Slightly better than raw ASR

Integrated Classification

- Focused analysis
 - Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness

Integrated Classification

Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7

Integrated Classification

Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7
 - ASR words: S/Q: 75.4%->79.8; A/B: 78.2%->81.7
- More useful when recognition is iffy

Dialog Act Tagging with Feature Latent Semantic Analysis

- Dumais, Deerwester (1990)
- Latent semantic classes (topics)

- Dumais, Deerwester (1990)
- Latent semantic classes (topics)
- Input: term-document matrix D

documents are vectors in the vocabulary space

- Dumais, Deerwester (1990)
- Latent semantic classes (topics)
- Input: term-document matrix D

documents are vectors in the vocabulary space

• Output: modified matrix D'

documents are vectors in the latent semantic space

- Dumais, Deerwester (1990)
- Latent semantic classes (topics)
- Input: term-document matrix D

documents are vectors in the vocabulary space

Output: modified matrix D'

documents are vectors in the latent semantic space

Use D' for classification

- D=USV^T
- $d = (w_1, ..., w_N)$

- D=USV^T
- $d = (w_1, ..., w_N)$
- D'=US_kV^T
- $d=(z_1,...,z_k) \ k << N$

- D=USV^T
- $d = (w_1, ..., w_N)$
- D'=US_kV^T

 $d=(z_1,...,z_k) \ k << N$

• min $|| D - D'||_{F}^{2} = \sum (d[i][j] \cdot d'[i][j])^{2}$

(Doc 1) G: Do you see the lake with the black swan?	Query_yn
(Doc 2) F: Yes, I do	Reply-y
(Doc 3) G: Ok,	Ready
(Doc 4) G: draw a line straight to it	Instruct
(Doc 5) F: straight to the lake?	Check
(Doc 6) G: yes, that's right	Reply-y
(Doc 7) F: Ok, I'll do it	Acknowledge

Figure 1: A hypothetical dialogue annotated with MapTask tags

	(Doc 1)	(Doc 2)	(Doc 3)	(Doc 4)	(Doc 5)	(Dcc 6)	(Doc 7)
do	1	1	0	0	0	0	1
see	1	0	0	0	0	0	0
lake	1	0	0	0	1	0	0
black	1	0	0	0	0	0	0
swan	1	0	0	0	0	0	0
yes	0	1	0	0	0	1	0
ok	0	0	1	0	0	0	1
draw	0	0	0	1	0	0	0
line	0	0	0	1	0	0	0
straight	0	0	0	1	1	0	0
to	0	0	0	1	1	0	0
it	0	0	0	1	0	0	1
that	0	0	0	0	0	1	0
right	0	0	0	0	0	1	0

Table 1: The 14-dimensional word-document matrix W

LSA uses co-occurrence statistics

	d1	d 2	d 3	d4	d 5	d6	d 7	d8	d9	d10
t1	5	3	3	3	4	0	0	0	0	0
t2	6	4	4	5	6	0	0	0	0	0
t3	3	2	2	2	3	-1	0	0	-1	-1
t4	4	3	3	3	4	-1	0	0	-1	0
t5	2	1	1	1	2	-1	0	0	-1	-1
t6	5	3	3	4	5	-1	0	-1	-1	-1
t7	6	4	5	5	6	-1	0	0	-1	-1
t8	0	0	0	0	0	6	3	5	6	8
t9	0	0	0	0	0	3	2	3	3	4
t10	-1	-1	-1	0	-1	2	1	2	2	2
t11	-1	-1	0	0	0	5	3	4	5	6
t12	0	-1	0	0	0	4	2	3	4	5
t13	-1	-1	-1	0	0	4	2	4	5	6
t14	0	0	0	0	0	3	2	3	3	4

 $D'=US_kV^T$

• Dialog acts are treated as documents

- Dialog acts are treated as documents
- Compute LSA representations for DA's

- Dialog acts are treated as documents
- Compute LSA representations for DA's
- Use features other than terms in the DA vectors:
 - POS, syntactic information
 - previous DA, game

- Dialog acts are treated as documents
- Compute LSA representations for DA's
- Use features other than terms in the DA vectors:
 - POS, syntactic information
 - previous DA, game
- Compute LSA on the DA vectors extended with new features - FLSA

Corpus 1: CallHome Spanish

- 120 telephone conversations in Spanish (family, friends)
 - 12066 unique words, 44628 DA's
 - 232 tags unified in 37, 10, 8 groups

Corpus 1: CallHome Spanish

- 120 telephone conversations in Spanish (family, friends)
 - 12066 unique words, 44628 DA's
 - 232 tags unified in 37, 10, 8 groups
- Tags:
 - DA (statement, question, answer...)
 - Move (initiative, response, feedback)
 - Game (information, directive)
 - Activities (gossip, argue)

Corpus 2: MapTask

- 128 dialogs, map task experiment
 - 1835 unique words, 27084 DA's
- Tags:
 - DA's (=moves) (instruct, explain,...)
 - Games (clarification, ...)
 - Transaction (normal, review, overview, irrelevant)

Corpus 3: DIAG-NLP

- Computer mediated tutoring dialogs between a tutor and a student
 - 23 dialogs
 - 670 unique words, 660 DA's

Corpus 3: DIAG-NLP

- Computer mediated tutoring dialogs between a tutor and a student
 - 23 dialogs
 - 670 unique words, 660 DA's
- Tags:
 - 4 DA's (problem solving, judgment, domain knowledge, other)
 - Consult Type (type of student query)

New Features

- POS, SRule (declarative, Wh-question)
- Duration
- Speaker (MapTask: Giver, Follower)
- Previous DA
- Game
- Initiative
- Combination

Performance Comparison

Corpus	Baseline	LSA	FLSA	Best other
CallHome37	42.68%	65.36%	74.87%	76.20%
CallHome10	42.68%	68.91%	78.88%	76.20%
MapTask	20.69%	42.77%	73.91%	62.10%
DIAG-NLP	43.64%	75.73%	74.81%	n.a.

Baseline is picking the most frequent DA in each corpus LSA, FLSA – classification using the training DA vectors

Features Contribution

- Features that did not help
 - POS
 - SRule
 - Previous DA

Features Contribution

- Features that did not help
 - POS
 - SRule
 - Previous DA
- Features that helped
 - Game
 - Speaker
 - Initiative
 - Combinations of these

MapTask

LSA 42.77% MapTask 41.84% SRule MapTask 43.28% POS MapTask 43.59% Duration MapTask 46.91% Speaker MapTask 47.09% Previous DA MapTask 66.00% Game MapTask 69.37% Game+Prev. DA MapTask 73.25% Game+Speaker+Prev. DA MapTask 73.91% Game+Speaker

Comments

- Not clear how to interpret LSA in this setting:
 - classification is done by finding the most similar training DA. LSA accounts for semantic similarity.
 - only works withing the same dataset?

Comments

- Not clear how to interpret LSA in this setting:
 - classification is done by finding the most similar training DA. LSA accounts for semantic similarity.
 - only works withing the same dataset?
- Features are controversial because the labels are not known for new data

Comments

- Not clear how to interpret LSA in this setting:
 - classification is done by finding the most similar training DA. LSA accounts for semantic similarity.
 - only works withing the same dataset?
- Features are controversial because the labels are not known for new data
- "Game" contains a lot of information about the DA's label
- Previous DA can be inferred by the system, but this feature did not help

SVMs and HMMs for DA Tagging

Recognizing Maptask Acts

• Assume:

- Word-level transcription
- Segmentation into utterances,
- Ground truth DA tags
- Goal: Train classifier for DA tagging
 - Exploit:
 - Lexical and prosodic cues
 - Sequential dependencies b/t Das
 - 14810 utts, 13 classes

Features for Classification

- Acoustic-Prosodic Features:
 - Pitch, Energy, Duration, Speaking rate
 - Raw and normalized, whole utterance, last 300ms
 - 50 real-valued features

Features for Classification

- Acoustic-Prosodic Features:
 - Pitch, Energy, Duration, Speaking rate
 - Raw and normalized, whole utterance, last 300ms
 - 50 real-valued features
- Text Features:
 - Count of Unigram, bi-gram, tri-grams
 - Appear multiple times
 - 10000 features, sparse
Classification with SVMs

• Support Vector Machines

Classification with SVMs

- Support Vector Machines
 - Create n(n-1)/2 binary classifiers
 - Weight classes by inverse frequency
 - Learn weight vector and bias, classify by sign

Classification with SVMs

- Support Vector Machines
 - Create n(n-1)/2 binary classifiers
 - Weight classes by inverse frequency
 - Learn weight vector and bias, classify by sign
 - Platt scaling to convert outputs to probabilities

• Some sequences of DA tags more likely:

- Some sequences of DA tags more likely:
 - E.g. P(affirmative after y-n-Q) = 0.5
 - P(affirmative after other) = 0.05

- Some sequences of DA tags more likely:
 - E.g. P(affirmative after y-n-Q) = 0.5
 - P(affirmative after other) = 0.05
- Learn P(yi|yi-1) from corpus
 - Tag sequence probabilities
 - Platt-scaled SVM outputs are P(y|x)

- Some sequences of DA tags more likely:
 - E.g. P(affirmative after y-n-Q) = 0.5
 - P(affirmative after other) = 0.05
- Learn P(yi|yi-1) from corpus
 - Tag sequence probabilities
 - Platt-scaled SVM outputs are P(y|x)
- Viterbi decoding to find optimal sequence

Results

	SVM Only	SVM+Seq
Text Only	58.1	59.1
Prosody Only	41.4	42.5
Text+Prosody	61.8	65.5

Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:

Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:
 - Whole utterance models? more fine-grained
 - Longer structure, long term features