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What is a
multimodal Interface?
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The Problem

e Speech recognition systems are limited
* Correcting errors is challenging

“repair problem”



Multimodal Dictation System

Dictation recognizer +

multimodal error correction
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Evaluation

* Hypotheses:
— Multimodal correction is faster

— Detecting potential errors automatically speeds
up correction process

— Users prefer fastest modality



Evaluation

e Tasks: participants read newspapers

* Factors:
— Correction modality

* Measures:
— Input rate (WPM)
— System response time
— Recognition accuracy
— Correction accuracy
— Correction speed



Correction accuracy for modality

Modality Correction Accuracy
Choose from alternatives 24%
Respeaking 35%
Handwriting 75%
Spelling 82%

Typing 87%




Use of different modalities

Modality Usage Frequency
Spelling 0.14
Choose from alternatives 0.21
Respeaking 0.28

Handwriting 0.35
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The Problem

Voice search is common

Challenges of voice search on mobile devices
1. Noisy environments

2. User compensate in unhelpful ways
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Evaluation

e Simulation using DB of voice search utterances
* Experiments with cases where ASR failed



Recovery Rate with Multimodal
Word Palette

Recovery Rate (%)
0 5 10 15 20 25 30

N-Best ? 4.31
NB + Supplement _ 14.44
NB+ Query W 25.22

e supp. + cuery | -




Feng et al. 2011.
Speech and Multimodal

Interaction in Mobile Search



Challenges for Multimodal Interfaces

* Mu
* Mu
* Mu
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for Voice Search

microphone activation
confirmation and error correction
input and integration
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Question

How do users use different modalities in
multimodal error correction?



Question

How do users use different modalities in
multimodal error correction?

Hypothesis:

Users will switch modalities and use different

words making corrections. They are more likely
to do this as their attempts to correct errors fail.



Study

* Participants: 20 native English speakers

 Apparatus: car rental, conference registration
assistant system.
— pen + speech input
— Simulated speech rec w/errors
— “Spiral depth”: 1-6

* Procedure: participants completed
transactions as accurately as possible.



Prototype system

System asks: where would you like to pick up your car?
Users speaks: “san francisco”
System displays simulated error: “???”



Results

Modality preference — Speech over written

Simultaneous use of modes
Barely —only 0.7% of all words

Modality alternatives

Increased when people corrected errors
Peaked at spiral depth 5 (40% probability)
Lexical alternation

Probability fluctuated
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Goals of multimodal interfaces

e Accommodate
— User skill & preference
— Different situations

* |Increase efficiency
* Better error handling



