Multimodal Interfaces

Shiri Azenkot May 29, 2013 LNG 575

Multimodal Interface Papers

Oviatt. 2012.

Multimodal Interfaces

Feng et al. 2011.

Speech and Multimodal Interaction in Mobile Search

Oviatt, Gent. 1996.

Error Resolution During Multimodal Human-Computer Interaction

Paek et al. 2008.

Search Vox: Leveraging Multimodal Refinement and Partial Knowledge for Voice Search

Suhm et al. 2001.

Multimodal Error Correction for Speech User Interfaces

Multimodal Interface Papers

Suhm et al. 2001.

Multimodal Error Correction for Speech User Interfaces

Paek et al. 2008.

Search Vox: Leveraging Multimodal Refinement and Partial Knowledge for Voice Search

Feng et al. 2011.

Speech and Multimodal Interaction in Mobile Search

Oviatt, Gent. 1996.

Error Resolution During Multimodal Human-Computer Interaction

Oviatt. 2012.

Multimodal Interfaces

What is a multimodal Interface?

Suhm et al. 2001.

Multimodal Error Correction for Speech User Interfaces

The Problem

- Speech recognition systems are limited
- Correcting errors is challenging "repair problem"

Multimodal Dictation System

Dictation recognizer **+** multimodal error correction

Gesture Recognition

Fig. 4. Editing using pen-based gestures.

Evaluation

- Hypotheses:
 - Multimodal correction is faster
 - Detecting potential errors automatically speeds up correction process
 - Users prefer fastest modality

Evaluation

- Tasks: participants read newspapers
- Factors:
 - Correction modality
- Measures:
 - Input rate (WPM)
 - System response time
 - Recognition accuracy
 - Correction accuracy
 - Correction speed

Correction accuracy for modality

Modality	Correction Accuracy
Choose from alternatives	24%
Respeaking	35%
Handwriting	75%
Spelling	82%
Typing	87%

Use of different modalities

Modality	Usage Frequency
Spelling	0.14
Choose from alternatives	0.21
Respeaking	0.28
Handwriting	0.35

Paek et al. 2008.

Search Vox: Leveraging Multimodal Refinement and Partial Knowledge for Voice Search

The Problem

Voice search is common

Challenges of voice search on mobile devices

- 1. Noisy environments
- 2. User compensate in unhelpful ways

Text hints

Using partial knowledge

Evaluation

- Simulation using DB of voice search utterances
- Experiments with cases where ASR failed

Recovery Rate with Multimodal Word Palette

Feng et al. 2011.

Speech and Multimodal Interaction in Mobile Search

Challenges for Multimodal Interfaces for Voice Search

- Multimodal microphone activation
- Multimodal confirmation and error correction
- Multimodal input and integration

Speak4It

PLOTE BRUINING AND INCOME IN CONTRACT

Oviatt, Gent. 1996.

Error Resolution During Multimodal Human-Computer Interaction

Question

How do users use different modalities in multimodal error correction?

Question

How do users use different modalities in multimodal error correction?

Hypothesis:

Users will switch modalities and use different words making corrections. They are more likely to do this as their attempts to correct errors fail.

Study

- Participants: 20 native English speakers
- Apparatus: car rental, conference registration assistant system.
 - pen + speech input
 - Simulated speech rec w/errors
 - "Spiral depth": 1-6
- Procedure: participants completed transactions as accurately as possible.

Prototype system

System asks: where would you like to pick up your car?

Users speaks: "san francisco"

System displays simulated error: "???"

Results

- Modality preference Speech over written
- Simultaneous use of modes

Barely – only 0.7% of all words

Modality alternatives

Increased when people corrected errors

Peaked at spiral depth 5 (40% probability)

Lexical alternation

Probability fluctuated

Probability of spiral depth and lexical alteration

Oviatt. 2012. Multimodal Interfaces

Goals of multimodal interfaces

- Accommodate
 - User skill & preference
 - Different situations
- Increase efficiency
- Better error handling