Corrections & Repairs

ErikAnthony Harté Ling 575 - Spring 2013

SDS Errors in Understanding

Mismatch between action intended vs. action taken

- ASR (automatic speech recognition)
- NLU (natural language understanding)

Prevent

- improve ASR
- simplify tasks
- constrain domain or vocabulary

Detect/Correct

• ???

Why Bother?

An efficient error handling strategy could allow our SDS to

- change system initiative strategy
- change dialog strategy
- modify ASR function

For example, upon detection of a possible misunderstanding the system might switch to an ASR function better tuned to recognize hyperarticulated speech.

Outline

1. Detection

Can prosodic features be used to recognize corrections?

2. Correction

A quick look at the RavenClaw Architecture for error handling.

3. A Sample Strategy

Using dialog costs to determine the optimum grounding strategy.

Detection: Experiment

TOOT - Phone based, train information dialog system

- 2528 turns, 152 dialogs
- Initiative:

system, user, mixed

• Confirmation:

implicit, explicit

• Strategy:

adaptive, non-adaptive

- Concept Accuracy ASR task information recognition
- Word Error Rate

Detection: Types of Corrections

REP - Repetitions	39%
OMT - Omissions	31%
PAR - Paraphrasing	19%
ADD - Additions	8%
A/O - Additions & Omissions	2%

Detection: Hyperarticulation associated with corrections?

Hyperarticulation:

- slower
- louder
- higher pitch
- follows longer pauses
- greater internal silence

Features

- f0 fundamental frequency
- RMAX energy
- duration
- length of preceding pause
- speaking rate

Result: 58% of corrections vs 12% non-corrections

Detection: Machine Learning

Feature set selected for generating classifier:

Prosodic (PROS) :

- Raw (raw values): f0max, f0mn, rmsmax, rmsmn, dur, ppau, tempo, zeros Norm1 (values normalized by first turn in dialogue): f0max1, f0mn1, rmsmax1, rmsmn1, dur1, ppau1, tempo1, zeros1
- Norm2 (values normalized by previous turn in dialogue): f0max2, f0mn2, rmsmax2, rmsmn2, dur2, ppau2, tempo2, zeros2
- ASR (ASR) : gram, str, conf, ynstr, nofeat, canc, help, wordsstr, syls, rejbool
- System Experimental SYS) : inittype, conftype, adapt, realstrat
- Dialogue Position (POS) diadist
- Dialogue History (DIA) :
 - PreTurn : value of PROS and ASR features for preceding turn (e.g., pref0max) PrepreTurn : value of PROS and ASR features for turn preceding preceding turn (e.g., ppref0max)
 - Prior : for each Boolean-valued feature (ynstr, nofeat, canc, help, rejbool), the number/percentage of prior turns exhibiting the feature (e.g., priorynstrnum/priorynstrpct)
 - PMean : for each continuous-valued PROS and ASR feature, the mean of the feature's value over all prior turns (e.g., pmnf0max)

Figure 3

Feature set for predicting corrections.

Detection: Machine Learning Results

The best feature set saw a reduction in the error rate from 29% to 15.72%

Table 7

Estimated error, recall, precision, and $F_{\beta} = 1$ for predicting corrections.

				class =	Г		class = F	
Features	DIA	$\text{Error} \pm \text{SE}$	Rec.	Prec.	$F_{\beta} = 1$	Rec.	Prec.	$F_{\beta} = 1$
Raw+ASR+SYS+POS	PreTurn	15.72 ± 0.80	70.61	74.96	.72	89.95	88.28	.89
Raw+ASR+SYS+POS	all	16.16 ± 0.58	69.80	74.65	.72	90.12	87.82	.89
PROS+ASR+SYS+POS	all	16.38 ± 0.61	69.01	74.05	.71	89.60	87.61	.88
ASR	all	16.41 ± 0.93	69.93	72.39	.70	88.76	87.7	.88
ASR+SYS+POS	all	17.01 ± 0.78	73.73	73.38	.73	88.68	89.00	.89
ASR+SYS+POS	none	18.60 ± 0.81	56.48	72.79	.63	91.33	83.76	.87
Raw+ASR+SYS+POS	none	18.68 ± 0.67	58.45	71.64	.64	90.37	84.17	.87
ASR+PROS	none	19.29 ± 0.78	54.54	69.97	.61	90.25	82.90	.86
POS+PROS	none	19.59 ± 0.73	52.96	69.70	.60	90.38	82.47	.86
Raw	all	19.68 ± 0.78	55.62	70.89	.62	90.64	83.33	.87
PROS	all	20.33 ± 0.90	56.45	69.23	.61	89.43	83.42	.86
ASR+POS	none	20.40 ± 0.79	52.20	71.99	.60	91.43	82.41	.87
PROS	none	20.53 ± 0.81	54.86	71.72	.62	90.78	83.07	.87
conf+reibool	all	21.23 ± 0.93	59.70	65.97	.62	87.05	84.05	.85
ASR+SYS	none	23.46 ± 0.72	51.55	63.40	.56	87.53	81.65	.84
ASR	none	24.19 ± 0.84	45.93	60.99	.52	87.80	79.90	.84
Raw	none	25.35 ± 0.93	42.26	59.46	.48	88.29	78.97	.83
POS	none	29.00 ± 1.02	0.00	-	_	99.94	70.99	.83
SYS	none	29.00 ± 1.02	0.00	_	_	100.00	71.00	.83
Promibaci baceline ormen	- 25 70 m	alority bacolino	orror _ '	20 00				

Prerejbool baseline error = 25.70; majority baseline error = 28.99

Correction: RavenClaw Framework

Requirements for Detection/Correction

- 1. ability to detect errors
- 2. set of recovery strategies
- 3. mechanism for selection and employing strategies

Domain Specific

• Dialog Task Specification

Domain Independent

- Dialog Engine
 - error handling
 - \circ timing
 - turn tracking

Correction: Dialog Task Specification

- Each agent manages a subpart of the dialog.
- Information is captured in *concepts*.
- Each leaf-level agent is associated with a specific concept.
- Four types of agent: *Inform*, *Request*, *Expect*, *Execute*

Correction: Dialog Engine

- Manages Dialog
- Dialog Stack + Expectation Agenda

Correction: Error Handling

- Error Handling (EH) process has a set of strategies
- Each concept and each basic agent in the DTS gets its own EH process
- All EH processes run simultaneously: A gating processes determines which process gets placed on top of stack

Correction: Error Handling Strategies

Misunderstanding vs. Non-understanding

- Incorrect sematic interpretation => leads to action but not likely correct
- No interpretation => no action, but still negative impact on quality of interaction

Misunderstanding Strategies

• explicit confirm, implicit confirm, reject

Non-understanding Strategies

• ask repeat, ask rephrase, reprompt, detailed reprompt, notify, yield, moveOn, youCanSay, fullHelp

Grounding

The exchange of positive and negative evidence to reduce uncertainty in the dialog

Kinds of evidence

- Display (implicit)
- Clarify (explicit)
- ...also
- Reject
- Accept

U: I can see a red building.
S (ACCEPT): Ok, can you see a tree in front of you?
S (DISPLAY): Ok, a red building, can you see a tree in front of you?
S (CLARIFY): A red building?
S (REJECT): What did you say?

How to decide what kind of evidence to provide?

- Level of uncertainty
- Task related costs and utility
- Cost of grounding action

Typical: Examine ASR confidence score

- High Accept
- Mid Display
- MidLow Clarify
- Low Reject

But, this only looks at one of the three factors...

Principle of Maximal Expected Utility, MEU

Choose a grounding action (GA), so that the sum of all task-related costs and grounding costs are minimized considering the probability that the recognition hypothesis is correct.

- For *P*(*correct*) we can use the ASR conf score...But, ...We still need *Cost*(*a*, *correct*), and *Cost*(*a*,*incorrect*)
- Ultimate measure of Cost(a,incorrect) is the reduction in user satisfaction, but that is at dialog level, we need turn level.
- Efficiency. "All things being equal agents try to minimize their effort at inducing what what intend to do."

Grounding Action Costs

• Example: Cost for choosing ACCEPT incorrectly: *Number of extra syllables* needed to later correct the dialog.

Table 1: Costs for different grounding actions, given the correctness of the recognition (COR=Correct, INC=Incorrect).

Action,Hyp	Costs
ACCEPT COR	No cost
ACCEPT, INC	The number of extra syllables the misun-
	derstanding adds to the dialogue (SylMis).
DISPLAY,COR	Grounding dialogue (SylDispCor).
DISPLAY, INC	Grounding dialogue (SylDispInc). Risk
	that the user does not correct the system
	(P(Fail Disp,Inc)) times the consequences
	of a misunderstanding (SylMis).
CLARIFY,COR	Grounding dialogue (SylClarCor). Risk
	that the user does not confirm the system
	(P(Fail Clar,Cor)) times the syllables for
	recovering the rejected concept (SylRec).
CLARIFY, INC	Grounding dialogue (SylClarInc)
REJECT,COR	The number of syllables it takes to receive
	new information of the same value as the
	rejected concept (SylRec).
REJECT, INC	No cost

Example: A short correction dialog - two syllables S: *Red?*

U: Yes.

Table 2: Cost functions for different grounding actions.

Action	Expected cost
ACCEPT	P(incorrect) x SylMis
DISPLAY	$P(correct) \ge SylDispCor + P(incorrect) \ge (SylDispInc + P(Eqil(DispInc) > SylMis))$
CLARIFY	$P(correct) \ge (SylClarCor + P(Fail)Clar,Cor)$
	x SylRec) + P(incorrect) x SylClarInc
REJECT	P(correct) x SylRec

Questions

?

References

1) Diane Litman; Marc Swerts; Julia Hirschberg. (2006) Characterizing and Predicting Corrections in Spoken Dialogue Systems Computational Linguistics, 32(3):417-438.

2) Dan Bohus; Alexander Rudnicky. (2005) Error Handling in the RavenClaw Dialog Management Architecture In Proceedings of HLT-EMNLP 2005, p. 225-232

3) G. Skantze. (2007)

Making grounding decisions:Data-driven estimation of dialogue costs and confidence thresholds

In Proceedings of the 8th SIGdial workshop on Discourse and Dialog, p.206-210

Thank You!