# Aspects and Objects in Sentiment Analysis

Jared Kramer and Clara Gordon April 29, 2014

# The Problem

- Most online reviews don't just offer a single opinion on a product
- Users are interested in finergrained information about product features
- Other sentiment tasks, like automatic summarization, rely on this fine-grained information
- Aspect grouping is a subjective task
  - Grouping task benefits from seed user input

... I liked the food, but the service was terrible....



room stain bed staff linens service shower pillows walls friendly



## Aspect Extraction (*Mukherjee & Liu, 2012*)

- Semi-unsupervised method for extracting aspects (features of the product being reviewed)
- User provides seed aspect categories
- Two subtasks:
  - Extracting aspect terms from reviews
  - Clustering synonymous aspect terms

- Parallels with:
  - Topic modeling
  - Joint sentiment and aspect models
  - DF-LDA model
    (Andrezejewski, 2009)
    - Must-link and cannotlink constraints
- Novel contribution: two semisupervised ASMs that both extract aspects and performs grouping, while jointly modeling aspect and sentiment

# **Previous Approaches**

- Latent Dirichlet Allocation (LDA)
  - Topic model that assigns Dirichlet prior to:
    - Distribution of topics in document
    - Distribution of words in topic
  - Determine topics using "higher-order cooccurrence"
    - Co-occurrence of same terms in different contexts



Image credit: http://en.wikipedia. org/wiki/Latent\_Dirichlet\_allocation

# Motivation and Intuition

• Unsupervised methods for extracting and grouping aspects are, well, unsupervised.



By adding seeds, you can tap into human intuition and guide the creation of the statistical model

# The Two Flavors

### Flavor 1

- Extracting aspects without grouping them
- Grouping can be done in a later step

#### Flavor 2

- Extract and group in a single step, using a sentiment switch
- Usually unsupervised
- Their approach falls into this category more-or-less

## Seeded Aspect and Sentiment (SAS) Model: Notation

#### Components

 $v_{1...V}$ : non-seed terms in vocabulary  $Q_{l=1...C}$ : seed sets  $Sent {}^{d}{}_{s}$ : sentence *s* of doc *d*   $w_{d,s,j}$ : jth term of  $Sent {}^{d}{}_{s}$   $r_{d,s,j}$ : switch variable for  $w_{d,s,j}$ **Distributions** 

 $\Psi^{A}_{t=1...T}$ : aspect distribution  $\Psi^{O}_{t=1...T}$ : sentiment distribution  $\Omega_{t, l}$ : distribution of seeds in set Q<sub>l</sub>

 $\psi_{d,s}$ : aspect and sentiment terms in Sent  $d_s$ 

Counts:

- V non-seed terms
- C seed sets
- T aspect models

# Algorithm Overview

- For each aspect *t*, draw Dirichlet distribution over:
  - sentiment terms  $\rightarrow (\Psi_{t}^{O})$
  - Each non-seed term and seed set  $\rightarrow (\Psi^{A}_{t})$ 
    - Each term in seed set  $\rightarrow \Omega_{t, l}$
- For each document d:
  - Draw various distributions over the sentiment and aspect terms
- For each word  $W_{d,s,j}$ :
  - Draw Bernoulli distribution for switch variable  $r_{d,s,j}$

- Authors assume that a review sentence usually talks about one aspect.
  - True?
  - Is a sentence with two aspects only able to yield one?

### **ME-SAS** variant

- Intuition: "aspect and sentiment terms play different syntactic roles in a sentence"
- Uses Max-Ent priors to model the aspect-sentiment switching (instead of switch variable *r*<sub>*d,s,j*</sub>)

# Results

## Qualitative

| Aspect                                                         | ME-                                                                                                                             | SAS                                                                                                       | SA                                                                                                                        | S                                                                                                          | ME-                                                                                                           | DF-LDA                                                                                               |                                                                                                               |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| (seeds)                                                        | Aspect                                                                                                                          | Sentiment                                                                                                 | Aspect                                                                                                                    | Sentiment                                                                                                  | Aspect                                                                                                        | Sentiment                                                                                            | Topic                                                                                                         |
| Staff<br>(staff<br>service<br>waiter<br>hospitality<br>upkeep) | attendant<br>manager<br>waitress<br>maintenance<br>bartender<br>waiters<br>housekeeping<br>receptionist<br>waitstaff<br>janitor | friendly<br>attentive<br>polite<br>nice<br>clean<br>pleasant<br>slow<br>courteous<br>rude<br>professional | attendant<br>waiter<br>waitress<br>manager<br>maintenance<br>helpful<br>waiters<br>housekeeping<br>receptionist<br>polite | friendly<br>nice<br>dirty<br>comfortable<br>nice<br>clean<br>polite<br>extremely<br>courteous<br>efficient | staff<br>maintenance<br>room<br>upkeep<br>linens<br>room-service<br>receptionist<br>wait<br>pillow<br>waiters | friendly<br>nice<br>courteous<br>extremely<br>nice<br>clean<br>polite<br>little<br>helpful<br>better | staff<br>friendly<br>helpful<br>beds<br>front<br>room<br>comfortable<br>large<br>receptionist<br>housekeeping |
|                                                                |                                                                                                                                 |                                                                                                           |                                                                                                                           |                                                                                                            |                                                                                                               |                                                                                                      |                                                                                                               |

### Quantitative

| Aspect    | ME-LDA |      | DF-LDA |      | DF-LDA-Relaxed |      | SAS  |      |      | ME-SAS |      |      |      |      |      |
|-----------|--------|------|--------|------|----------------|------|------|------|------|--------|------|------|------|------|------|
|           | P@10   | P@20 | P@30   | P@10 | P@20           | P@30 | P@10 | P@20 | P@30 | P@10   | P@20 | P@30 | P@10 | P@20 | P@30 |
| Dining    | 0.70   | 0.65 | 0.67   | 0.50 | 0.60           | 0.63 | 0.70 | 0.70 | 0.70 | 0.80   | 0.75 | 0.73 | 0.90 | 0.85 | 0.80 |
| Staff     | 0.60   | 0.70 | 0.67   | 0.40 | 0.65           | 0.60 | 0.60 | 0.75 | 0.67 | 0.80   | 0.80 | 0.70 | 1.00 | 0.90 | 0.77 |
| Amenities | 0.80   | 0.80 | 0.67   | 0.70 | 0.65           | 0.53 | 0.90 | 0.75 | 0.73 | 0.90   | 0.80 | 0.70 | 1.00 | 0.85 | 0.73 |

# Critiques

#### Pros:

- Sentiment analysis is highly domain specific
  - Just a small amount of userprovided, domain-specific goes a long way to improve performance

#### Cons:

 More explanation of the intuitions behind the distributions used in the model would be helpful Brainstorming Session

• If we had this model available to us to build an application, what would it look like?

# Who are the users?

- From the paper:
  - "asking users to provide some seeds is easy as they are normally experts in their trades and have a good knowledge what are important in their domains"
- Is this true?
- Who are the users the authors have in mind?

# This is about joint sentiment and aspect discovery, right?

- We don't know how the sentiment side does because they don't report evaluation
- They actually report sentiment words in aspect categories as errors for this paper.
- The model described in this paper uses seed words to discover aspects:
  - Does this defeat the purpose?
  - Potential for bootstrapping?

# Do we believe the results?

Despite these criticisms, for the most part we do believe these results.

# Matching Reviews to Objects using a LM (*Dalvi et al, 2009*)

- Problem: determine entity (object) described by an online review using *text only*
- "IR in reverse:" review is query, and objects are "documents" in collection
- Advantage: expands range of search when aggregating user opinions: blogs, message boards, etc.



## Context



# Problems with Traditional IR

- IR methods incompatible with problem
  - tf-idf: restaurant named "Food" will have a high idf score, causing it to be the match for
- Long queries, short documents
  - Predictable language in query, structured document
- Innovation: "mixture" language model: assumes two different types of language in review
  - Generic review language
  - Object-specific language



# Model Notation

General intuition behind generative model: state a model for documents, and select the document most likely to have been generated by the query



- $r_e = r \cap text(e)$
- P<sub>e</sub>(w): probability word in review describes object
- P(w): probability word is generic review language
- Parameter  $\alpha$ :  $\alpha = P_e(w)$ , 1  $\alpha = P(w)$
- Z(r): normalizing function based on review length and word counts

## Model Definition

Estimating review  $P(r|e) = Z(r) \prod_{w \in r} ((1 - \alpha)P(w) + \alpha P_e(w))$ probability:

$$\prod_{w \in r_e} \left( (1 - \alpha) P(w) + \alpha P_e(w) \right) \longrightarrow \prod_{w \in r_e} \left( 1 + \frac{\alpha}{1 - \alpha} \frac{P_e(w)}{P(w)} \right)$$

Matching object to review:  $= \arg \max_{e} \sum_{w \in r_e} \log \left( 1 + \frac{\alpha}{1-\alpha} \frac{P_e(w)}{P(w)} \right)$ 

\*\* uniform assumption for review language allows us to ignore words outside  $\rm r_{\rm e}$ 

## Parameter Estimation

- Similar to a traditional LM, but requires estimation because total term frequency counts aren't available
- *P(w)* calculated using reviews with all object-related language removed
- α estimated using development set: 0.002
  - Experiments showed performance is not sensitive to this parameter

 $g(w) = \log(1/\operatorname{freq}(w))$  $P_e(w) = \frac{g(w)}{\sum_{w' \in \operatorname{text}(e)} g(w')}$ 

## Dataset

- ~300K Yelp reviews, describing 12K restaurants
- Processing: removed reviews with no mention of the restaurant
- Expanded set of 681K restaurants from Yahoo! Local
- Final dataset: 25K reviews, describing 6K restaurants
- Evenly divided test and training sets, with 1K reserved as development data





# Results

- Baseline algorithm: TFIDF+
  - Treats objects as queries, review as documents

$$e^* = \arg\max_e \sum_{w \in r_e} \log f(w)$$

RLM: 
$$f(w) = 1 + \frac{\alpha}{1-\alpha} \frac{P_e(w)}{P(w)}$$

TFIDF+: f(w) = N/df(w)

- RLM outperforms TFIDF+ particularly for longer reviews
- Longer reviews more difficult to categorize in general: more confounding proper noun mentions



# Critiques

#### Pros:

- Good example of using relatively simple LM techniques to gain a significant advantage over tf-idf
- Methods could be expanded to other IR tasks with long queries and short "documents"
  - Ex: topic of customer emails

#### Cons:

- Data processing removed ~11/12 of original Yelp review set
  - Suggests only a small fraction of reviews are suitable for object classification
- Proliferation of structured review sites calls into question usefulness of method
- Questionable assumptions: uniform distribution of review language

Aspect Ranking: Identifying Important Product Aspects from Online Consumer Reviews *Yu, Zha, Wang, Chua, 2011* 

## Main RQ:

• Beyond identifying aspects, can we rank them according to importance?

## **Building on Previous Work:**

- Frequency alone has been used as an indicator of importance
- Is frequency enough?
- Is frequency a good idea at all?

Define importance: The aspects that most influence a consumer' s opinion about a product.

## Aspect Ranking: Assumptions

# Central Idea:

"we assume that consumer's overall opinion rating on a product is generated based on a weighted sum of his/her specific opinions on multiple aspects of the product, where the weights essentially measure the degree of importance of the aspects" (p. 1497)

Do we agree with this assumption?

# Aspect Ranking: Data

- 11 products in 4 domains:
  - All electronics products
- 2 types of reviews crawled from 4 web sites:
  - $\circ$  Pros + Cons
  - Free text
- Manually annotated by several people for aspect importance and sentiment (importance = average of gold standard)

# Aspect Ranking: Methodology

### Overview

- 1. Extract aspects via dependency parsing
  - Take frequent NPs from Pros/Cons, use them to train an SVM for the free text.
  - Expand via synonymy (*thesaurus.com*)
  - Problems?

2. Classify the sentiment of these aspects

- Train SVM (again) on Pros/Cons, classify sentiment expressions in free text closest to aspects.
- Problems?
- This seemed almost unrelated to the core goals of the paper

# Ranking Aspects: Methodology

- 3. Determine aspects importance
  - Assume the opinion of a review can be represented as a vector of aspects with a corresponding vector of weights (importance).
  - Their model's job is to create that weight vector.
  - Opinion is seen as being drawn from a Normal Distribution (why?) and use MLE given corpus data to optimize the weights.

# Aspect Ranking: Results and Evaluation

## Aspect Identification

| Data set   | Hu's Method | Wu's Method | Our Method |
|------------|-------------|-------------|------------|
| Canon EOS  | 0.681       | 0.686       | 0.728      |
| Fujifilm   | 0.685       | 0.666       | 0.710      |
| Panasonic  | 0.636       | 0.661       | 0.706      |
| MacBook    | 0.680       | 0.733       | 0.747      |
| Samsung    | 0.594       | 0.631       | 0.712      |
| iPod Touch | 0.650       | 0.660       | 0.718      |
| Sony NWZ   | 0.631       | 0.692       | 0.760      |
| BlackBerry | 0.721       | 0.730       | 0.734      |
| iPhone 3GS | 0.697       | 0.736       | 0.740      |
| Nokia 5800 | 0.715       | 0.745       | 0.747      |
| Nokia N95  | 0.700       | 0.737       | 0.741      |

# Aspect Ranking: Results and Evaluation

## Aspect Ranking

| # | Frequency | Correlated | Hybrid     | Our Metho |
|---|-----------|------------|------------|-----------|
| 1 | Phone     | Phone      | Phone      | Usability |
| 2 | Usability | Usability  | Usability  | Apps      |
| 3 | 3G        | Apps       | Apps       | 3G        |
| 4 | Apps      | 3G         | 3 <b>G</b> | Battery   |
| 5 | Camera    | Camera     | Camera     | Looking   |
| 6 | Feature   | Looking    | Looking    | Storage   |
| 7 | Looking   | Feature    | Feature    | Price     |
| 8 | Battery   | Screen     | Battery    | Software  |
| 9 | Screen    | Battery    | Screen     | Camera    |
|   | 1         | 1          | I          | I         |

Looks pretty good, though the order does not match the gold standard

# Aspect Ranking: Results and Evaluation

#### Aspect Ranking

Metric: Normalized Discounted Cummulative Gain

(More points given to important aspects at the top of the list)

|           | Frequency |       |       | Correlation |       |       | Hybrid |       |       | Our Method |       |       |
|-----------|-----------|-------|-------|-------------|-------|-------|--------|-------|-------|------------|-------|-------|
| Data set  | @5        | @10   | @15   | @5          | @10   | @15   | @5     | @10   | @15   | @5         | @10   | @15   |
| Canon EOS | 0.735     | 0.771 | 0.740 | 0.735       | 0.762 | 0.779 | 0.735  | 0.798 | 0.742 | 0.862      | 0.824 | 0.794 |
| Fujifilm  | 0.816     | 0.705 | 0.693 | 0.760       | 0.756 | 0.680 | 0.816  | 0.759 | 0.682 | 0.863      | 0.801 | 0.760 |
| Panasonic | 0.744     | 0.807 | 0.783 | 0.763       | 0.815 | 0.792 | 0.744  | 0.804 | 0.786 | 0.796      | 0.834 | 0.815 |

# Aspect Ranking: Final thoughts

- Despite criticisms, this seems to work.
- They made some assumptions that I don't fully agree with
- They actually state that frequency is not a good metric, then go ahead and use it in both the identification and ranking
- But ultimately, their results look viable to me

# Thank you!