MULTIPARTY DIALOGS

John Riebold

Conversational Roles

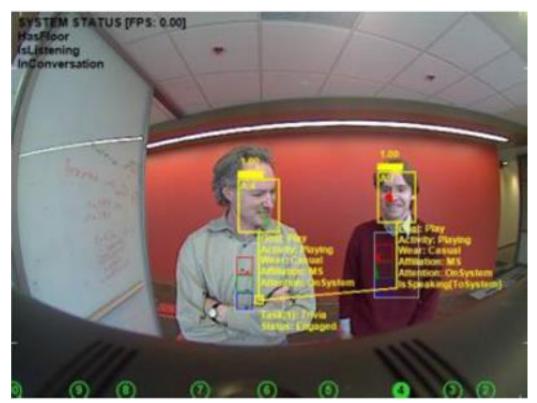
- 2 participants:
 - Speaker
 - Addressee
- 3+ participants:
 - Speaker
 - Addressee
 - Auditor (known, ratified)
 - Overhearer (known, non-ratified)
 - Eavesdropper (unknown, non-ratified) (Bell, 1984)

Speaker Identification

- Difficult in multiparty dialogs
- Can be done acoustically, with a microphone array, or visually

Addressee Recognition

- Multiparty dialogs present many more possibilities
- Addressee can be inferred from content (e.g. name, position/rank, etc.)
- Can also be done with positional audio or video


Addressee Recognition

- Jovanovic & op den Akker (2004) presents a set of features that could be used to perform addressee recognition:
 - Speech
 - Linguistic markers (e.g. to infer person, number)
 - Names
 - Rank/title?
 - Dialog acts (specifically, relation to previous conversation and effect on subsequent conversation
 - Gaze
 - Gesture

Context (e.g. user/conversation history, spatial organization)

Speaker & Addressee Identification

- Bohus & Horvitz (2009) used video to identify speakers and addressees
- Part of a more sophisticated engagement system

Turn Management

- Turn-taking in multiparty dialog can be complex
- More agents available to take a turn
- Humans may drop some turn-taking expectations in conversation with a machine, but won't with other people
- Depending on the system, crucial evidence may not be available (e.g. video, audio)

Turn Management

- Bohus & Horvitz (2011)
 - Used Decision Theory to model turn-taking and allow the system to take the floor at relevant junctures
 - Leveraged audio/video info, previous turn info, time since previous turn, processing delays, and cost
 - Compared heuristic vs. learned (MaxEnt) models of floor release, and heuristic vs. Decision-theoretic models of turn-taking policy

Model		Coot
Floor Release Inference	Policy	Cost
Heuristic	Heuristic	0.43
Learned	Heuristic	0.29
Learned	Decision-theoretic	0.21

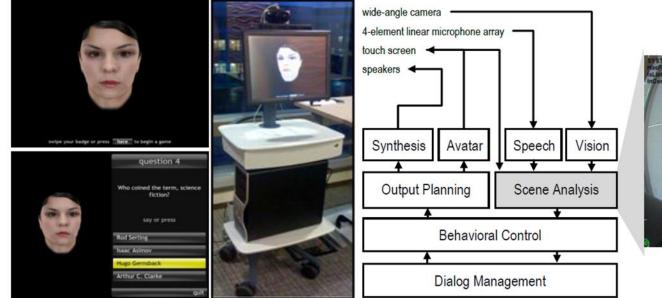
Channel Management

- Multiparty dialogs may have multiple channels (i.e. multiple conversations)
- May share a single channel (i.e. single topic, one speaker at a time)

Thread/Conversation Management

- Multiparty systems must manage a complex set of shifting (and often linked) topics
- Side conversations can entail an entirely separate set of threads
- Current thread bears on turn-taking, obligations, grounding, etc.

Thread/Conversation Management


- Purver, et al. (2007) look at the automatic detection of subdialogs
- Detection of subdialogs is done with classifiers using various features:
 - ngrams
 - Utterance length
 - Prosody
 - Time expression tags
 - Dialog acts
 - Context
- Classifiers outperform the baseline, but take a hit when using errorful ASR input

Initiative Management

- Multiparty may have unevenly-distributed initiative
- Speakers can defer to others
- Interruptions are more likely

Attention Management

- Managing multiple (possibly uninvolved) participants is necessary in multiparty systems
- Bohus & Horvitz (2009) model multiparty engagement using acoustic, positional, visual, and tactile information

Grounding and Obligation

- Multiparty dialogs may have very complex grounding and obligations
- If information is presented in one conversation, must it be grounded in another?
- How should a system handle transfer of obligation?

Grounding and Obligation

- Purver, et al. (2007) also look at the automatic detection of 'action items' (obligations)
- They train a classifier to rank phrases based on various features:
 - Phrase length
 - Phrase probability
 - Parse probability
 - Syntactic features (class, theta roles, main verb, head noun, etc.)
 - Time expression tags
- Evaluated based on amount task descriptions covered by top-ranked fragment
- Results for timeframe phrases were above baseline, but still relatively low (f-score 0.51, precision 0.62). Results for description were worse, with no feature set outperforming the baseline.

Discussion

- What possible use cases are there for systems like MSR's Situated Interaction?
- Would it be worth implementing these systems in commercial applications?
- Are there other cues or types of information that aren't being used in these models?

References

- Bell, A. (1984) Language Style as Audience Design. In Coupland, N. and A. Jaworski (eds.) Sociolinguistics: a Reader and Coursebook, pp. 240-50. New York: St Martin's Press Inc.
- Bohus, D. & Horvitz, E. (2009) Models for Multiparty Engagement in Open-World Dialog. In *Proceedings of SIGdial 2009*.
- Bohus, D. & Horvitz, E. (2011) Decisions about Turns in Multiparty Conversation: From Perception to Action. In *ICMI-2011*.
- Jovanovic, N. & op den Akker, R. (2004) Towards automatic addressee identification in multi-party dialogues. In *Proceedings of Sigdial 2004*.
- Purver, M., Dowding, J., Niekrasz, J., Ehlen, P., Noorbaloochi, S., & Peters, S. (2007) Detecting and Summarizing Action Items in Multi-Party Dialogue. In *Proceedings of SIGdial 2007*, p. 18-25.
- Traum, D. (2004) Issues in multiparty dialogues. In F. Dignum (ed.), Advances in Agent Communication. Springer-Verlag LNAI 2922, p. 201-211.