Non-native Speech in SDS (es?) Florian Braun

Overview

Basic overview of speech recognizer

Overview

- Basic overview of speech recognizer
- Where does non-native speech cause problems

Overview

- Basic overview of speech recognizer
- Where does non-native speech cause problems
- How to address issues

Consists of 2 main parts

- Consists of 2 main parts
 - The acoustic model

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure
- Both parts work together to allow for recognition

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure
- Both parts work together to allow for recognition
 - The LM backs the acoustic model to trim possible matches

They don't have native acoustics

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers
 - L2 speakers have much larger variation

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers
 - L2 speakers have much larger variation
 - Coach them to get it right!

• More Data!

- More Data!
 - Just get L2 speakers into the Acoustic model

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!
 - More data often just confuses the models.

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!
 - More data often just confuses the models.
 - Makes the models too complex

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!
 - More data often just confuses the models.
 - Makes the models too complex
 - Especially for the acoustic model

Adding more data to the LM allows:

- Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.

- Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.
 - Works well on transcribed speech

- Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.
 - Works well on transcribed speech
 - Without some added boost to the acoustic model does not really impact overall performance

Adding acoustic data

- Adding acoustic data
 - A little bit of data helps, even more, not so much

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
 - Use results from most confident model

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
 - Use results from most confident model
 - Problem becomes picking most confident model

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
 - Use results from most confident model
 - Problem becomes picking most confident model
 - Just using raw recognition scores are not a good indicator

 There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
- The improvements need to affect both the acoustic and language models

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
- The improvements need to affect both the acoustic and language models
- There are still challenges in picking the right data to supplement these models with

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
- The improvements need to affect both the acoustic and language models
- There are still challenges in picking the right data to supplement these models with
- There are still challenges in making the extra data not degrade performance

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
- The improvements need to affect both the acoustic and language models
- There are still challenges in picking the right data to supplement these models with
- There are still challenges in making the extra data not degrade performance
- There are still challenges in choosing the correct result from recognition

Questions

- Can coaching system users really help?
- Would non-standard synthesized voices make speakers of non-standard varieties more likely to use an SDS?
 - Can building those types of systems allow us to infer how to better build systems to recognize nonstandard speakers?