Non-native Speech in SDS

Florian Braun
Overview

- Basic overview of speech recognizer
Overview

- Basic overview of speech recognizer
- Where does non-native speech cause problems
Overview

- Basic overview of speech recognizer
- Where does non-native speech cause problems
- How to address issues
Speech Recognizer

- Consists of 2 main parts
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure

- Both parts work together to allow for recognition
Speech Recognizer

- Consists of 2 main parts
 - The acoustic model
 - The model for the phones of the input
 - The language model
 - The model for grammatical structure

- Both parts work together to allow for recognition
 - The LM backs the acoustic model to trim possible matches
Problems for Non-native Speakers

- They don't have native acoustics
Problems for Non-native Speakers

• They don't have native acoustics
 – Native trained acoustic model is inadequate to model their acoustics
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers
 - L2 speakers have much larger variation
Problems for Non-native Speakers

- They don't have native acoustics
 - Native trained acoustic model is inadequate to model their acoustics
 - Different non-native populations have different acoustics
 - A model for one group does not cover a group of speakers which share a different L1
- They do not share the same idiomatic expressions
 - A native LM often time misses vocab from L2 speakers
 - L2 speakers have much larger variation
 - Coach them to get it right!
How to Address These Problems

• More Data!
How to Address These Problems

- More Data!
 - Just get L2 speakers into the Acoustic model
How to Address These Problems

• More Data!
 – Just get L2 speakers into the Acoustic model
 – Make the LM more diverse.
 • Allow for more variation
 • Allow for more ungrammatical constructions
How to Address These Problems

• More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 • Allow for more variation
 • Allow for more ungrammatical constructions
• Not so fast!
How to Address These Problems

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!
 - More data often just confuses the models.
How to Address These Problems

• More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 • Allow for more variation
 • Allow for more ungrammatical constructions

• Not so fast!
 - More data often just confuses the models.
 - Makes the models too complex
How to Address These Problems

- More Data!
 - Just get L2 speakers into the Acoustic model
 - Make the LM more diverse.
 - Allow for more variation
 - Allow for more ungrammatical constructions
- Not so fast!
 - More data often just confuses the models.
 - Makes the models too complex
 - Especially for the acoustic model
Effects of Adding More Data

- Adding more data to the LM allows:
Effects of Adding More Data

- Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.
Effects of Adding More Data

• Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.
 - Works well on transcribed speech
Effects of Adding More Data

- Adding more data to the LM allows:
 - Better parsing, fewer OOV words, still improves L1 recognition.
 - Works well on transcribed speech
 - Without some added boost to the acoustic model does not really impact overall performance
Effects of Adding More Data

- Adding acoustic data
Effects of Adding More Data

- Adding acoustic data
 - A little bit of data helps, even more, not so much
Effects of Adding More Data

• Adding acoustic data
 – A little bit of data helps, even more, not so much
 – Adding everything to one model can be detrimental
Effects of Adding More Data

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
Effects of Adding More Data

• Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
 - Use results from most confident model
Effects of Adding More Data

- Adding acoustic data
 - A little bit of data helps, even more, not so much
 - Adding everything to one model can be detrimental
 - Cluster substitutions that occur together to form multiple acoustic models
 - Use results from most confident model
 - Problem becomes picking most confident model
Effects of Adding More Data

• Adding acoustic data
 – A little bit of data helps, even more, not so much
 – Adding everything to one model can be detrimental
 – Cluster substitutions that occur together to form multiple acoustic models
 – Use results from most confident model
 • Problem becomes picking most confident model
 • Just using raw recognition scores are not a good indicator
Conclusions

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
Conclusions

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would.
- The improvements need to affect both the acoustic and language models.
Conclusions

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would.
- The improvements need to affect both the acoustic and language models.
- There are still challenges in picking the right data to supplement these models with.
Conclusions

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would
- The improvements need to affect both the acoustic and language models
- There are still challenges in picking the right data to supplement these models with
- There are still challenges in making the extra data not degrade performance
Conclusions

- There need to be improvements in modeling to allow L2 speakers to use systems just like L1 speakers would.
- The improvements need to affect both the acoustic and language models.
- There are still challenges in picking the right data to supplement these models with.
- There are still challenges in making the extra data not degrade performance.
- There are still challenges in choosing the correct result from recognition.
Questions

- Can coaching system users really help?
- Would non-standard synthesized voices make speakers of non-standard varieties more likely to use an SDS?
 - Can building those types of systems allow us to infer how to better build systems to recognize non-standard speakers?