Advanced NLU & Dialog Models

Ling575 Spoken Dialog Systems April 21, 2016

Roadmap

Advanced NLU

- Advanced Dialog Models
 - Information State Models
 - Statistical Dialog Models

Learning Probabilistic Slot Filling

- Goal: Use machine learning to map from recognizer strings to semantic slots and fillers
- Motivation:
 - Improve robustness fail-soft
 - Improve ambiguity handling probabilities
 - Improve adaptation train for new domains, apps
- Many alternative classifier models
 - HMM-based, MaxEnt-based

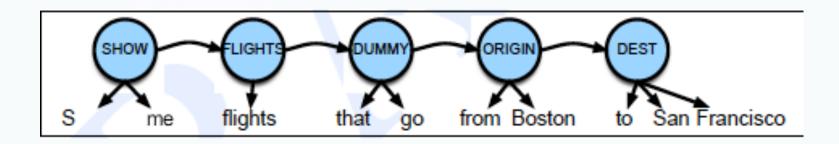
HMM-Based Slot Filling

- Find best concept sequence C given words W
- C^{*}= argmax P(C|W)
- = $\operatorname{argmax} P(W|C)P(C)/P(W)$
- = $\operatorname{argmax} P(W|C)P(C)$
- Assume limited M-concept history, N-gram words

• =
$$\prod_{i=2}^{N} P(w_i | w_{i-1} ... w_{i-N+1}, c_i) \prod_{i=2}^{N} P(c_i | c_{i-1} ... c_{i-M+1})$$

Probabilistic Slot Filling

• Example HMM



Advanced Dialog Management

Information State Models

- Challenges in dialog management
 - Difficult to evaluate
 - Hard to isolate from implementations
 - Integration inhibits portability
 - Wide gap between theoretical and practical models
 - Theoretical: logic-based, BDI, plan-based, attention/ intention
 - Practical: mostly finite-state or frame-based
 - Even if theory-consistent, many possible implementations
 - Implementation dominates

Why the Gap?

- Theories hard to implement
 - Underspecified
 - Overly complex, intractable
 - e.g. inferring all user intents
- Theories hard to compare
 - Employ diff't basic units
 - Disagree on basic structure

- Implementation is hard
 - Driven by technical limitations, optimizations
 - Driven by specific tasks
- Most approaches simplistic
 - Not focused on model details

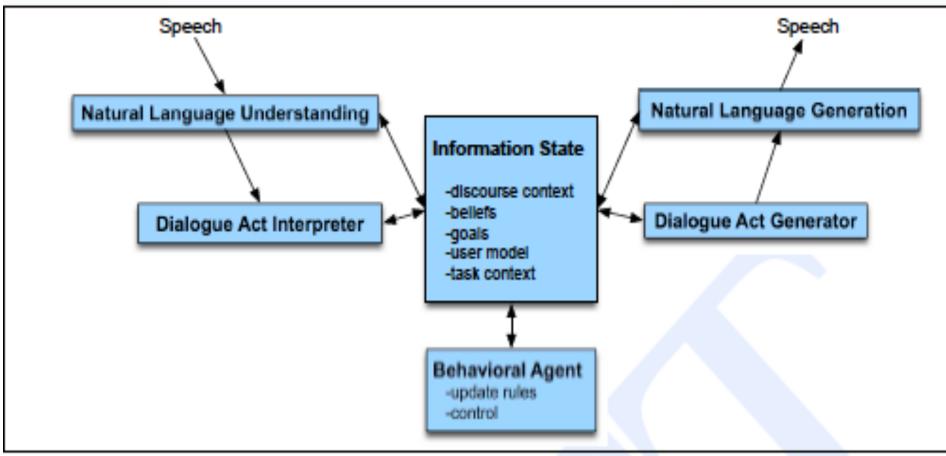
Information State Approach

Approach to formalizing dialog theories

- Toolkit to support implementation (Trindikit)
 - Designed to abstract out dialog theory components
- Example systems & related tools

Information State Architecture

Simple ideas, complex execution



Information State Theory of Dialog

- Components:
 - Informational components:
 - Common context and internal models (belief, goals, etc)
 - Formal representations:
 - Dialog moves: recognition and generation
 - Trigger state updates
 - Update rules:
 - Describe update given current state, moves, etc
 - Update strategy:
 - Method for selecting rules if more than one applies
 - Simple or complex

Example Dialog

- S: Welcome to the travel agency!
- U: flights to paris
- S: Okay, you want to know about price. A flight. To Paris. Let's see. What city do you want to go from?

-		BEL AGENDA	=	{} <>]
PRIVATE	=	PLAN	=	$\left\langle \begin{array}{c} findout(?x.dept-month(x)) \\ findout(?x.dept-day(x)), \\ findout(?x.class(x)), \\ consultDB(?x.price(x)) \end{array} \right.$	
		TMP	=		
		NIM	=		
		СОМ	=	$\{dest-city(paris), how(plane)\}$	1
		ISSUES	=	$\langle ?x.dept-city(x), ?x.price(x) \rangle$	
SHARED	=	QUD	=	$\langle ?x.dept-city(x) \rangle$	
		PU	=		
-		L LU	=	$\langle \operatorname{ask}(\operatorname{sys}, ?x.\operatorname{dept-city}(x)), \ldots \rangle$]

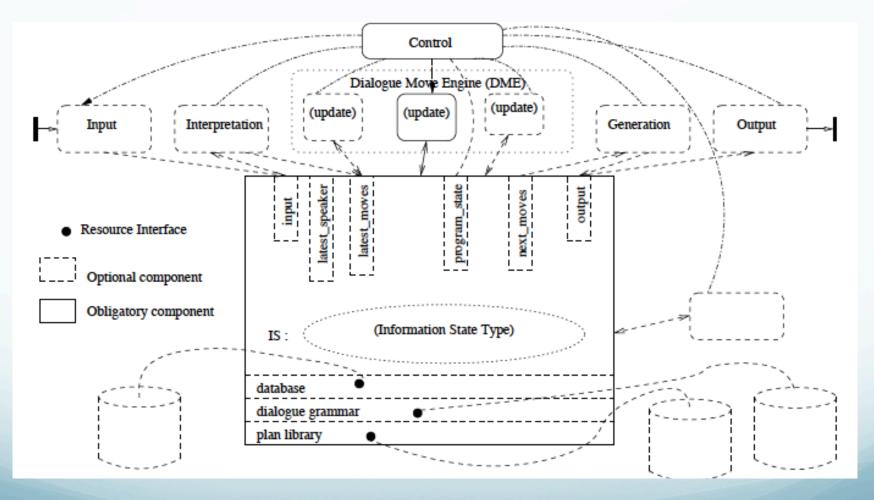
Example Update Rule

U-RULE: accommodateQuestion(Q, A) PRE: $\begin{cases}
in(SHARED.LU, answer(usr, A)), \\
in(PRIVATE.PLAN, findout(Q)) \\
domain :: relevant(A, Q)
\end{cases}$ EFF: $\begin{cases}
del(PRIVATE.PLAN, findout(Q)) \\
push(SHARED.QUD, Q)
\end{cases}$

Implementation

- Dialog Move Engine (DME)
 - Implements an information state dialog model
 - Observes/interprets moves
 - Updates information state based on moves
 - Generates new moves consistent with state
- Full system requires: DME+
 - Input/output components
 - Interpretation: determine what move made
 - Generation: produce output for 'next move'
 - Control system to manage components

Trindikit Architecture



Multi-level Architecture

- Separates types of design expertise, knowledge
- Domain & language resources → Domain system
- Dialog theory
 - IS, update rules, etc
- Software Engineering
 - basic types, control

- → Abstract DME
- → Trindikit

Dialogue Acts

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - We'll see taxonomies soon

Dialogue Act Interpretation

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show me flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?
 - Yeah.
 - Depends on context: Y/N answer; agreement; back-channel

Dialogue Act Recognition

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: Yeah: agreement vs backchannel
 - Adjacency pairs:
 - Y/N question, agreement vs Y/N question, backchannel
 - DA bi-grams

Detecting Correction Acts

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.
 - Some word cues: 'No',' I meant', swearing..
- Can train classifiers to recognize with good acc.

Statistical Dialog Management

New Idea: Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.

22

What do we mean by actions A and policies π ?

- Kinds of decisions a conversational agent needs to make:
 - When should I ground/confirm/reject/ask for clarification on what the user just said?
 - When should I ask a directive prompt, when an open prompt?
 - When should I use user, system, or mixed initiative?

A threshold is a humandesigned policy!

- Could we learn what the right action is
 - Rejection
 - Explicit confirmation
 - Implicit confirmation
 - No confirmation
- By learning a policy which,
 - given various information about the current state,
 - dynamically chooses the action which maximizes dialogue success

Another strategy decision

- Open versus directive prompts
- When to do mixed initiative

- How we do this optimization?
- Markov Decision Processes

25

Review: Open vs. Directive Prompts

- Open prompt
 - System gives user very few constraints
 - User can respond how they please:
 - "How may I help you?" "How may I direct your call?"
- Directive prompt
 - Explicit instructs user how to respond
 - "Say yes if you accept the call; otherwise, say no"

Review: Restrictive vs. Non-restrictive gramamrs

- Restrictive grammar
 - Language model which strongly constrains the ASR system, based on dialogue state
- Non-restrictive grammar
 - Open language model which is not restricted to a particular dialogue state

Kinds of Initiative

• How do I decide which of these initiatives to use at each point in the dialogue?

Grammar	Open Prompt	Directive Prompt
Restrictive	Doesn't make sense	System Initiative
Non-restrictive	User Initiative	Mixed Initiative

Goals are not enough

- Goal: user satisfaction
- OK, that's all very well, but
 - Many things influence user satisfaction
 - We don't know user satisfaction til after the dialogue is done
 - How do we know, state by state and action by action, what the agent should do?
- We need a more helpful metric that can apply to each state

Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent
- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility

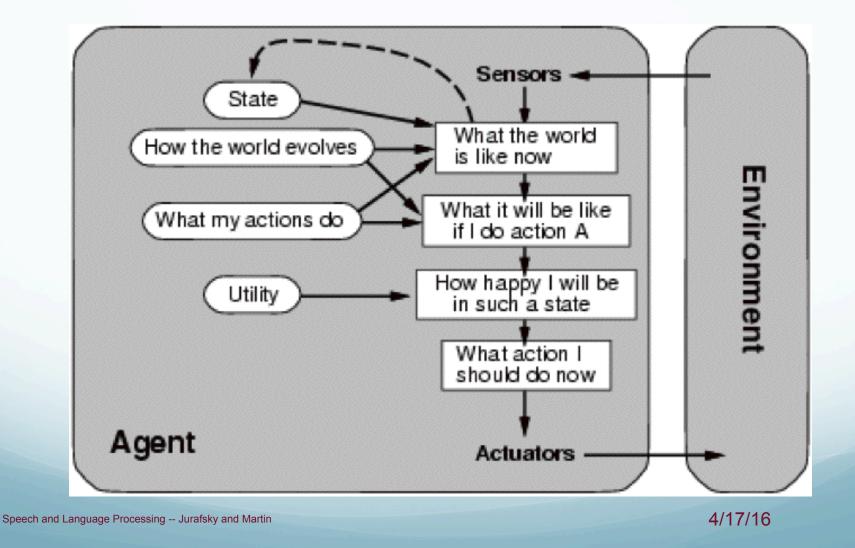
Maximum Expected Utility

- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility
- Action A has possible outcome states Result_i(A)
- E: agent's evidence about current state of world
- Before doing A, agent estimates prob of each outcome
 - P(Result_i(A)|Do(A),E)
- Thus can compute expected utility:

$$EU(A | E) = \sum_{i} P(Result_{i}(A) | Do(A), E)U(Result_{i}(A))$$

31

Utility (Russell and Norvig)



32

Markov Decision Processes

• Or MDP

- Characterized by:
 - a set of states S an agent can be in
 - a set of actions A the agent can take
 - A reward r(a,s) that the agent receives for taking an action in a state

33

A brief tutorial example

- Levin et al (2000)
- A Day-and-Month dialogue system
- Goal: fill in a two-slot frame:
 - Month: November
 - Day: 12th
- Via the shortest possible interaction with user

34

What is a state?

- In principle, MDP state could include any possible information about dialogue
 - Complete dialogue history so far
- Usually use a much more limited set
 - Values of slots in current frame
 - Most recent question asked to user
 - Users most recent answer
 - ASR confidence
 - etc

35

State in the Day-and-Month example

- Values of the two slots day and month.
- Total:
 - 2 special initial states s_i and s_f.
 - 365 states with a day and month
 - 1 state for leap year
 - 12 states with a month but no day
 - 31 states with a day but no month
 - 411 total states

Actions in MDP models of dialogue

- Speech acts!
 - Ask a question
 - Explicit confirmation
 - Rejection
 - Give the user some database information
 - Tell the user their choices
- Do a database query

37

Actions in the Day-and-Month example

- a_d: a question asking for the day
- a_m : a question asking for the month
- a_{dm}: a question asking for the day+month
- a_f: a final action submitting the form and terminating the dialogue

38

4/17/16

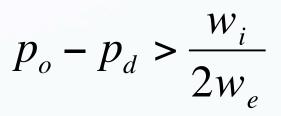
A simple reward function

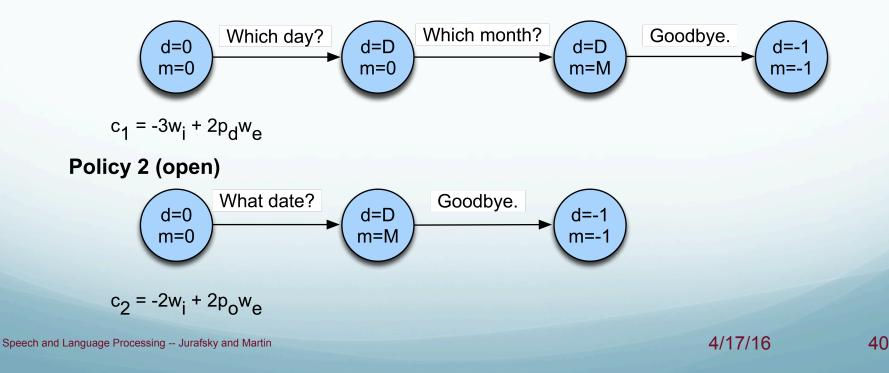
- For this example, let's use a cost function
- A cost function for entire dialogue
- Let
 - N_i=number of interactions (duration of dialogue)
 - N_e =number of errors in the obtained values (0-2)
 - N_f=expected distance from goal
 - (0 for complete date, 1 if either data or month are missing, 2 if both missing)
- Then (weighted) cost is:
- $C = w_i \times N_i + w_e \times N_e + w_f \times N_f$

4/17/16

2 possible policies

Strategy 1 is better than strategy 2 when improved error rate justifies longer interaction: Policy 1 (directive)





That was an easy optimization

- Only two actions, only tiny # of policies
- In general, number of actions, states, policies is quite large
- So finding optimal policy π^* is harder
- We need reinforcement learning
- Back to MDPs:

MDP

• We can think of a dialogue as a trajectory in state space

$$s_1 \rightarrow_{a1,r1} s_2 \rightarrow_{a2,r2} s_3 \rightarrow_{a3,r3} \cdots$$

- The best policy π^* is the one with the greatest expected reward over all trajectories
- How to compute a reward for a state sequence?

Reward for a state sequence

- One common approach: discounted rewards
- Cumulative reward Q of a sequence is discounted sum of utilities of individual states

$$Q([s_0, a_0, s_1, a_1, s_2, a_2 \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots, q_n$$

 Makes agent care more about current than future rewards; the more future a reward, the more discounted its value

43

4/17/16

The Markov assumption

MDP assumes that state transitions are Markovian

$$P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_o, a_t, a_{t-1}, \dots, a_o) = P_T(s_{t+1} \mid s_t, a_t)$$

Expected reward for an action

 Expected cumulative reward Q(s,a) for taking a particular action from a particular state can be computed by Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

- Expected cumulative reward for a given state/action pair is:
 - immediate reward for current state
 - + expected discounted utility of all possible next states s'
 - Weighted by probability of moving to that state s'
 - And assuming once there we take optimal action a'

What we need for Bellman equation

- A model of p(s' |s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s' |s,a) = C(s,s',a)/C(s,a)
- If we knew the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)
- Given these parameters, can use value iteration algorithm to learn Q values (pushing back reward values over state sequences) and hence best policy

Speech and Language Processing -- Jurafsky and Martin

4/17/16

Final reward

- What is the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)?
- This is what our automatic evaluation metric PARADISE computes!
- The general goodness of a whole dialogue!!!!!

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus
- Have random conversations with simulated people
 - Now you can have millions of conversations with simulated people
 - So you can have a slightly larger state space

An example

• Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. Journal of AI Research.

- NJFun system, people asked questions about recreational activities in New Jersey
- Idea of paper: use reinforcement learning to make a small set of optimal policy decisions

Very small # of states and acts

- **States**: specified by values of 8 features
 - Which slot in frame is being worked on (1-4)
 - ASR confidence value (0-5)
 - How many times a current slot question had been asked
 - Restrictive vs. non-restrictive grammar
 - Result: 62 states
- Actions: each state only 2 possible actions
 - Asking questions: System versus user initiative
 - Receiving answers: explicit versus no confirmation.

Ran system with real users

- 311 conversations
- Simple binary reward function
 - 1 if competed task (finding museums, theater, winetasting in NJ area)
 - 0 if not
- System learned good dialogue strategy: Roughly
 - Start with user initiative
 - Backoff to mixed or system initiative when re-asking for an attribute
 - Confirm only a lower confidence values

State of the art

- Only a few such systems
 - From (former) ATT Laboratories researchers, now dispersed
 - And Cambridge UK lab
- Hot topics:
 - Partially observable MDPs (POMDPs)
 - We don't REALLY know the user's state (we only know what we THOUGHT the user said)
 - So need to take actions based on our BELIEF, I.e. a probability distribution over states rather than the "true state"

Summary

- Utility-based conversational agents
 - Policy/strategy for:
 - Confirmation
 - Rejection
 - Open/directive prompts
 - Initiative
 - +?????
 - MDP
 - POMDP

Dialog State Tracking

- Developed as new Shared Task for SDS
- Goals:
 - Typical shared task:
 - Common data, resources, evaluation
 - To allow fair comparison, drive development
 - Reduce barrier to entry
 - Prior SDS shared tasks all full system development
 - Complex, many components
 - Domain-bound
 - Yield more general dialog management findings

Task

- At some time *t*,
 - Given prior dialog context, and
 - A set of possible dialog states N_t
 - Produce a probability distribution over states
- States?
 - Assignments of values to slots +
 - "REST" = None correct
- Ideal distribution?
 - Correct state = 1; all others 0

Context

- What can be in the context?
 - Almost anything
- Speech context:
 - Current, prior ASR results
 - Current, prior SLU results
 - Outputs, confidence scores, etc
- Interaction context:
 - Backend system database, etc
- How long? As much as desired

Data

• (2012, 2013)

- System data from 2010 Spoken Dialog Challenge
 - Pittsburgh bus information database and access
 - 4 participating dialog systems w/different behavior
 - Collected dialogs
- Logs transformed to per-utterance dialog acts: 9 slots
 - E.g. the next 61c from oakland to mckeesport transportation center
 - inform(time.rel=next), inform(route=61c), inform(from.neighborhood=0a kland), inform(to.desc="mckeesport transportation center").
 - Also system-specific confidence/alt. hypotheses in n-best

Labeling & Evaluation

- Gold-standards created manually
 - By transcribers, crowdsourced state labeling (checked)
- Lots of evaluation measures:
 - Accuracy: per-turn, is top-ranked hyp correct?
 - AvgP: average score of correct hyp
 - MRR: mean reciprocal rank of correct hyp
 - L2: distance between output score vector, true one hot
 - Variants of ROC

Baselines

- Majority class:
 - Always guess "REST"
- Standard non-tracking approach:
 - Highest ranked SLU 1-best
 - Score = confidence score
- Note: Intrinsic evaluation only

Example Approach

- DNN system for Dialog State Tracking
 - Henderson, Thompson & Young 2013
- Straight-forward DNN approach
 - Inputs: Feature functions over context window
 - Outputs: probability distribution over states
- Features:
 - Score: variants of SLU confidence, ranks, confirm
 - User dialog acts, machine dialog acts, acts on values
- Results: All features useful, 10 turn context best