Energy methods:

These are methods based on linear elastic behavior and conservation of energy, i.e. the
work done by external forces equals the energy stored in the structure under load.

Energy U = Fx/2 = F?/2k where F is the applied force, x is the distance moved in
the direction of the force at its point of application and k is the elastic stiffness of the part,
again in the direction of the force at its point of application.
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Castigliano’s Theorem:
This is a powerful approach to solving a wide range of deflection analysis situations.

The displacement corresponding to any force applied to an elastic stricture and collinear
with that force is equal to the partial derivative of the total strain energy with respect to
that force.

e 0, = Z—g where §; is the displacement at the point of application of force Fj in

i

the direction of F;.

e.g.

The truss members are steel rods with a 50 mm diam.
The load F is 4 kN. Find the deflection at the point A

EDB 1.5m A

Statics solution gives Fag = 0.75 F = 3 kN (tension)
Fac= -1.25F =5 kN (compression)
Rod area = 1t x .05%/4 = 0.001963 m’
Total energy
(0.75F) x1.5 s (1.25F) x2.5

T 2%0.001963%205¢9 | 2% 0.001963 x 205¢9
= 5902¢-9x F> N.m.

S, :S—U: 1.18x10°F N.m

A

giving 34 = 0.047 mm



Deflection of curved members:

Consider the curved frame shown in (a) below. We want to find the deflection of the
frame due to force F, in the direction of F and at its point of application.
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Consider the strain energy in the element defined by the angle d6. The force F is
resolved into components F; and Fy. There are three parts of the strain energy:

F?Rd 0
1. due to axial force Fg we have d 1= W
2
2. due to transverse force F, we have dU, = —CI;’A 121(9 where C = 1.5 is the

correction factor for a rectangular cross section in shear.



M?Rd6

3. due to bending moment M we have dU, = (for R’/h > 10 only)

The total strain energy is thus:

J-F RdO I CF’RdO J~M2Rd6?
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The required deflection is:

5:6U:J-F6,R(8ngd9+ CFR(
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From the figures we find:
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M = FRsin@ aﬂstinQ
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F,=Fsind aﬂzsin@
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F =Fcosd = =cosl

Substituting these gives:
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FRI sin” d@
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o= ﬂjfsin2 0d6+ﬂ]£cos
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and, oO= R ﬂCFR EFR and, if R/h is large, the first two terms will be small
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and hence an approximate solutionis o =

FEA comparison: a 4” ID, semicircular aluminum object similar to Figure (a) above has
a wall thickness of 0.15” and a width of 0.75”. The force F is 1.0 Ib. Using the equation
above gives 0 = 0.006218”. FEA analysis of this case gives 6 = 0.006245”.
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A Circular Ring Subjected to Diametral Loading

A circular ring subjected to a tensile load P along a diameter is shown in the following
sketch. This geometry is often referred to as a "proving ring." Commercial load cells
based on a proving ring may be (a) sensing the change in inner diameter, or (b) sensing
the strain induced at various points in the member using strain gages (as in this lab).

A free-body diagram obtained by making an imaginary cut along the horizontal axis is
also shown in the sketch. Due to symmetry considerations:

(a) The shear load at the horizontal cut must be zero (note that horizontal shear loads
have therefore not been included in the free-body diagram).

(b) An internal normal force with magnitude (P / 2) is induced at the horizontal cross-
section.

The bending moment M, is indeterminate, and therefore cannot be determined directly
from the equations of equilibrium. However, M, can be determined using strain-energy
methods as shown above:

Consider a thin ring loaded by two equal and opposite forces as shown:
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Since, by symmetry, the section at O does not rotate, we have by Castigliano:
ou

oM,
Now consider the element ds shown in (b). At this section the bending moment is:

M=M, —%(r—x):MO —%(I—cos&’) as x =rcosf

=0 where U is the strain energy for a single quadrant.

The strain energy is:

2 /2 2
U:J~Mds:.(l)~Mrd9 as ds=rd0
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Hence, from above we have:
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and, from above,we get 0M /0M , =1, hence,
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[mao= | [MO —%(l—cos&)}M:O
0 0

dg=0

Solving gives :

MOZFF(l—lj .......... 1
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hence, from above we get

M = ﬂ(cos&’—gj
2 T

The greatest value occurs at B, where @ = /2 and is

P
T

Curved beam theory implies that a uniaxial state of stress is induced along the horizontal
diameter. Since linear elastic behavior has been assumed, the total stress induced at the
horizontal axis is the sum of the stress caused by the normal force and the stress caused
by the bending moment. That is:

o= F +Mocl. ) o= F N
24" der at inner surface and 24" der,

The strains and, hence the strain gauge outputs are readily found from these stresses.
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at the outer surface.



