
Energy methods: 
 
These are methods based on linear elastic behavior and conservation of energy, i.e. the 
work done by external forces equals the energy stored in the structure under load. 
 
 Energy U = Fx/2 = F2/2k  where F is the applied force, x is the distance moved in 
the direction of the force at its point of application and k is the elastic stiffness of the part, 
again in the direction of the force at its point of application. 
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Castigliano’s Theorem: 
 
This is a powerful approach to solving a wide range of deflection analysis situations. 
 
The displacement corresponding to any force applied to an elastic stricture and collinear 
with that force is equal to the partial derivative of the total strain energy with respect to 
that force. 
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the direction of Fi. 
 
e.g.       
 
The truss members are steel rods with a 50 mm diam. 
The load F is 4 kN. Find the deflection at the point A 
 
Statics solution gives  FAB =  0.75 F = 3 kN (tension) 
   FAC =  -1.25 F = 5 kN (compression) 
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giving  δA =  0.047 mm 
 



Deflection of curved members: 
 
Consider the curved frame shown in (a) below. We want to find the deflection of the 
frame due to force F, in the direction of F and at its point of application. 
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(b) 
 
Consider the strain energy in the element defined by the angle dθ.  The force F is 
resolved into components Fr and Fθ. There are three parts of the strain energy: 
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2. due to transverse force Fr we have  
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correction factor for a rectangular cross section in shear. 



3. due to bending moment M we have   
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The total strain energy is thus: 
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The required deflection is: 
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From the figures we find: 
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Substituting these gives: 
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FEA comparison:  a 4” ID, semicircular aluminum object similar to Figure (a) above has 
a wall thickness of 0.15” and a width of 0.75”.  The force F is 1.0 lb. Using the equation 
above gives δ = 0.006218”.  FEA analysis of this case gives  δ =  0.006245”.



 
A Circular Ring Subjected to Diametral Loading 
 
A circular ring subjected to a tensile load  P  along a diameter is shown in the following 
sketch.  This geometry is often referred to as a "proving ring."  Commercial load cells 
based on a proving ring may be (a) sensing the change in inner diameter, or (b) sensing 
the strain induced at various points in the member using strain gages (as in this lab).  
 
A free-body diagram obtained by making an imaginary cut along the horizontal axis is 
also shown in the sketch.  Due to symmetry considerations: 
 
(a) The shear load at the horizontal cut must be zero (note that horizontal shear loads 
have therefore not been included in the free-body diagram). 
 
(b) An internal normal force with magnitude (  P / 2) is induced at the horizontal cross-
section.  
 
The bending moment   Mo  is indeterminate, and therefore cannot be determined directly 
from the equations of equilibrium.   However,  Mo  can be determined using strain-energy 
methods as shown above: 
 
Consider a thin ring loaded by two equal and opposite forces as shown:   
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Since, by symmetry, the section at O does not rotate, we have by Castigliano: 
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U    where U is the strain energy for a single quadrant. 

Now consider the element ds shown in (b). At this section the bending moment is: 
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The strain energy is:  
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Hence, from above we have: 
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Curved beam theory implies that a uniaxial state of stress is induced along the horizontal 
diameter.  Since linear elastic behavior has been assumed, the total stress induced at the 
horizontal axis is the sum of the stress caused by the normal force and the stress caused 
by the bending moment.  That is: 
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σ  at the outer surface. 

The strains and, hence the strain gauge outputs are readily found from these stresses. 
 
 


