ME 354 LAB #4: DISCUSSION OF THE TORSION TEST

Each lab section performed atorsion test of a cylindrical 6061-T6 aluminum specimen. The
specimen was mounted in a Technovate model 9041 Torsion Tester. A top view isshown in
Figure 1. The cylindrical specimen was clamped in two 52.3 mm diagrips. Thetop grip was
held (essentially) fixed viatwo wire ropes. The bottom grip (not shown in Figure 1) was rotated
by means of athreaded loading rod and/or loading lever.

The angle through which the bottom grip (and hence the lower end of the specimen) was rotated
was measured using a pointer and angular scale. The force induced in the wire ropes as torque

was applied to the specimen was sensed indirectly by means of alever system and force gage, as
shown in Figure 1.
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Figure 1. Cylindrical Specimen Mounted in Torsion Tester (Top View)

Tensile tests of 6061-T6 aluminum were conducted during ME354 Lab #3. The following
properties can be inferred from this data :

e Young's modulus for 6061-T6: E = 68.5 GPa

e True stress-true curve modeled using the “Power-Hardening Relationship” (i.e., eq. 4.28 or
12.8 in the Dowling textbook):

strength coefficient: H = 413 MPa

strain hardening exponent: n = 0.0633

(Note: in accordance with eq 12.10, these values imply ayield strength of 294 MPa)

" These properties were inferred by Prof. M. Tuttle based on the data collected during the lab on Monday 27 January
2003. The properties you inferred from data you collected should be similar, but will probably not be numerically
identical.



e True stress-true curve modeled using the “Ramberg-Osgood Model” (i.e., eg. 12.13 in the
Dowling textbook):

strength coefficient: H = 407 MPa

strain hardening exponent: n = 0.0490

Poisson's ratio was not measured; assume v = 0.34. One objective of thislab isto use these
properties (i.e., properties measured during the tension test) to predict the T versus (4/L) curve
measured during the torsion test. A formal lab report describing your work is due two weeks after
your lab session. The following two items must appear in your lab report:

Table 1: A table with 6 columnsis shown on the following page. Complete the first 5 columns
of this table using the data collected during the torsion test. In the last column enter the torque
predicted at the angle of twist based on the power-hardening model. The steps that should be
followed to obtain these predictions are summarized in afollowing section of this document,
titled “Background Information”.

Table 2: A table with 6 columns

Item 3: Demonstrate whether the response of the cylindrical specimen subjected to atorque was
well predicted using properties measured in tension by plotting measured and predicted torque
versus (4L) on the same graph.



Table 1: Experimental measurements and predicted torques based on the Power-Hardening model

Angle (deg) [Force (N) |Angle (rad)|aL Measured Torque | Predicted Torque
(N-m) (Power-Hardening)
(N-m)




Table 2: Experimental measurements and predicted torques based on the Ramberg-Osgood model
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Background Information

Preliminary Discussion:

e Inthislab wetested acylindrical shaft of radius ¢ and length L, subjected to a pure torque T.
Calculation of the stresses and strains induced by this loading is based on the following
experimental observation:

"aradia line which is straight before loading remains a straight radial line after loading"

This observation leads to the conclusion that the shear strain y increases linearly with the radial
distance from center of the shaft (r):

7y ®="" aa

where @isthe angle of twist, measured in radians...that is, @ isthe angle that the cross-section at

one end of the shaft has rotated with respect to the cross-section at the other end (6 was
measured during the test...). Equation (1) indicates that

- ¥xy1s zero aong the shaft centerline (at r = 0), and
- 7xy Isamaximum at the outer surface of the shaft (yyy = Ymax =CO/L atr =c).

Therefore Eq (1a) can aso be written:

ny(r):gymax (1b)

e Refer to Figure 3.12 and section 13.4.2 of the Dowling textbook. The torque applied to a
circular shaft isrelated to the shear stressinduced at any radial position according to Eq 13.52
(repeated here as Eq 2):

Cc
T=21 _[ 71 2 @)
0
To evaluate thisintegral we must specify how stressis related to strain. We will here consider

three possihilities: (a) linear elastic, (b) nonlinear, power-hardening model, and (c) nonlinear,
Ramberg-Osgood model.



If the material islinear-elastic (which requires that stresses are relatively low such that yielding
does not occur), then according to Hooke's Law (7, = Gyyy) the shear stress also increases

linearly with r:

Gré
Ty =Ty =7

This result can be rearranged as follows:

Tyl
ey ®

In this case integration of Eq (2) leads to the well-known "torsion formula':

Tyy=—" = [T=——
SN r
Or, equivalently:
6
T=G)— 4
: 4

Now, the original experimental observation ("...straight radial lines remain straight radial
lines...") holds true even if the shaft is plastically deformed. Hence, Eq (1) isvalid even if the
shaft isloaded beyond the yield point. However, Egs (2-4) are based on the assumption of
linear-elastic behavior, and therefore these equations are not valid once yielding has occurred.
An idealized sketch showing the distribution of shear strains and stresses both before and after
yielding is shown in Figure 2. If stresses are low and yielding does not occur, then both shear
stress and shear strains increase linearly from the shaft center, and reach maximum values at the
outer radius. However, after yielding only the shear strain increases linearly. After yielding an
"elastic core" develops, and at radial positions outside this core the material has been plastically
deformed and the shear stress distribution is nonlinear. Theradial position at which yielding is
initiated can be predicted using Eq (3):

= (%)

where 7, = the shear yield strength.
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Figure 2: Distribution of shear stress and shear strain in a shaft with circular cross-section,

subjected to atorque T



e We will use the concept of "effective stress' and "effective strain” in our analysis. The
effective stressis listed in the Dowling textbook as Eq (7.37, 7.38):

1

V2

Since we are interested in stresses well beyond yielding, it is appropriate to use true stresses in
Eq (6):

o= [(O'X—O'y)z+(O'y—O'Z)2+(O'Z—O'X)2+6(T)%y +r)2,2 +122X)]1/2 (6)

11 o L o o o N2
a=ﬁ[<(,x—oy>2+<ay—az)2+(az—ax)2+6<fx2y+fy2z+fz2x>]1 0
“It can be shown” that the effective strain is related to true strains according to:
T o o 3 . . U2
e:F{(ex—ey)%(ey—ez)Z+(ez—ex)2+5<7x2y+7y2z+7z2x>} ®)

Equation (8) does not appear in the Dowling textbook, but is equivalent to Eq 12.22.

****HERE ARE SOME IMPORTANT OBSERVATIONS ABOUT EFFECTIVE STRESSAND
EFFECTIVE STRAIN****

e What was the effective stress during the uniaxial tensile test? During the tension test the only
stress applied was the axial true stress, . No other stresses were present:

Oy=0;=Tyy =Ty =T =0
Substituting these conditions into Eq (7), we find:

O =0y

....during the tension test the effective stress o was identical to the true stress &,

e What was the effective strain during the uniaxial tensile test? We measured the true axial
strain, £, during the tension test. After yielding,v — 1/2. We can therefore assume that, after

yielding:

Substituting these conditionsinto Eq (8), we find:



£ =&y

...after yielding during the tension test the effective straine wasidentical to thetrue axial strain
Ey .-

e What was the effective stress during the torsion test? During the torsion test the only stress
applied was the true shear stress, 7,y No other stresses were present during the torsion test:

Substituting these conditions into Eq (7), we find:

0 =~3 Ty
.... during the torsion test the effective stress (o ) equaled the true shear stress ('fxy) multiplied
by a constant factor (\/§)
e What was the effective strain during the torsion test? The only strain induced during the
torsion test was the true shear strain 7, . No other strains were present:
Ex :gy =&, :77yz =7 =0
Substituting these conditions into Eq (8), we find:

- 1 -
£=—
B
.... during the torsion test the effective strain (& ) equaled the true shear strain ( ;7Xy) multiplied
by a constant factor (1/ V3 ).

These observations are important during application of the “power-hardening” and “Ramberg-
Osgood” models, as discussed in the following subsections.



Power-Hardening Model: Asapart of the uniaxial tensile test data reduction, we fit the
measured true axial stress-true axial strain response for 6061-T6 aluminum to the following
expression:

Gy = HEY

...that is, we have "measured” H and n for 6061-T6 aluminum. As pointed out above, during the
tensiontest: 0 =G, and € =&,. Furthermore, during the torsion test: o =+/3 Tyy and

£= 1 ;7Xy . We can therefore write the following:

NE

Gy = HEY

- _H (7Y
Txy—ﬁ(\@] (10)

**%* Eq (10) relates the true shear stress ('fxy) and true shear strain ( ;7Xy) present during the
torsion test using material properties (H, n) measured during the tension test.****

We are now ready to predict the measured torque versus (4/L) response. The total applied torque
equals the sum of the torque acting over the elastic core plus the torque acting over the
plastically-deformed outer region:

Tiotal = Telagtic + Tplastic (11)

, : - r~
The elastic core extends over 0<r <ry, and over thisregion 7,y = —7,. Therefore:
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Taagtic = (12)



The plastic region extends over r, <r <c, and over thisregion
~ n n
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Equations (12) and (13) allow usto predict the torque versus (4/L) response based on the Power-
Hardening model. To summarize:

a) For a specified angle of twist per unit length, use Eq 5 to calculate the radial position at which
yielding is predicted to occur:

Note:
(a) if ryIDIred > ¢, then yielding is not predicted...in other words, the stress-strain response

is predicted to be linear across the entire cross-section.

(b) if ry"’reOI < c, thenyielding is predicted. In this case an elastic core (with radius

ypred and c,

ryIDreOI ) and outer plastically-deformed region (with inner and outer radii r
respectively) is predicted.

b) Calculate the predicted elastic torque, using Eq (4) or Eq (12) as appropriate, which
corresponds to the angle of twist per unit length.

c). If yielding is predicted, calculate the predicted plastic torque using Eq (13) which corresponds
to the angle of twist per unit length

d) Use Eq (11) to calculate the predicted total predicted torque that corresponds to the angle of
twist per unit length.



Ramberg-Osgood Model: An aternate approach isto fit the tensile test data for 6061-T6
aluminum to the Ramberg-Osgood model, using the process described in Section 12.2.4 of the
Dowling textbook:

~ ~\1/n
~ O o
E=—+|—

E (Hj

Asdiscussed in Section 13.4.1, the concepts of effective stress and effective strain implies that
for the torsion test:

7 N
=~ Xy Xy
Ty =g \/_[ v J (14)
where: G= E
21+v)

The mathematical manipulation to follow is greatly ssmplified if we define a“shear” strength
coefficient:

H
He = 3(n+1)/2

Thisalows usto write Eq (14) as:

%z —?Xy+ Dy o (15)
=76 M h,

We now wish to integrate Eq (2), using the stress-strain relationship defined by Eq (15).  First,
using Eq (1b), note:

z 7 1/n
r=_°C 7Xy=~c Xy+( Xy) (16)
Ymax Ymax | G H;

Since ymax 1S aconstant (for a specified torque, T), and the radius c is obviously a constant, we

have:
C

dr = dy
Y max i

From Eq (15):

—~ ~ ~\1/n
Dy _1, 1 [Ty
d7y, G n7y(H;



Or:

07 =| L42 ?—Xylln d7 (17)
=G NGE i

Combining Eq (2), (16) and (17):

c 7 7 1/n 2 1 1 7 1/n
0 Ymax | G Hz Ymax || G NTxy

Completing thisintegral it can (eventually!) be shown:

1 2n+1 n+2 .o 1 _3
4 + +
4 3n+1’BT 2n+2’BT n+3'BT

T = 2703 iy (18)
L+ B;)°
where:
g, = 1P (199)
Vec
T 1/n
=~ C
Yoc =| — (19b)
> ( Hy ]
- T
=_C 19¢c
=g (190)
Ye =Yec + 77pc (19d)

Equations (18) and (19) allow us to predict the torque versus (/L) response based on the
Ramberg-Osgood model. The process is summarized in Table 2:

a) For a specified value of the shear stress induced at the outer radius (fc; column 1, Table 2):
- calculate the corresponding plastic true strain using Eq 19b (7 oc column 2, Table 2)

- calculate the corresponding elastic true strain using Eq 19¢ ( 7, ; column 3, Table 2)

- calculate the corresponding total true strain induced at the outer radius using Eq 19d
(7¢ ; column 4, Table 2)

- calculate the corresponding (6/L) using Eq 1 (column 5, Table 2)

b) Calculate the corresponding predicted torque using Eq 18 (T, column 6, Table 2)



