
ME 354 LAB #4: DISCUSSION OF THE TORSION TEST 
 
 
Each lab section performed a torsion test of a cylindrical 6061-T6 aluminum specimen.  The 
specimen was mounted in a Technovate model 9041 Torsion Tester.  A top view is shown in 
Figure 1. The cylindrical specimen was clamped in two 52.3 mm dia grips.  The top grip was 
held (essentially) fixed via two wire ropes.  The bottom grip (not shown in Figure 1) was rotated 
by means of a threaded loading rod and/or loading lever.   
 
The angle through which the bottom grip (and hence the lower end of the specimen) was rotated 
was measured using a pointer and angular scale. The force induced in the wire ropes as torque 
was applied to the specimen was sensed indirectly by means of a lever system and force gage, as 
shown in Figure 1. 
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Figure 1: Cylindrical Specimen Mounted in Torsion Tester (Top View) 
 
 
Tensile tests of 6061-T6 aluminum were conducted during ME354 Lab #3.  The following 
properties can be inferred from this data*: 
 
● Young’s modulus for 6061-T6:  E = 68.5 GPa 
 
● True stress-true curve modeled using the “Power-Hardening Relationship” (i.e.,  eq. 4.28 or 
12.8 in the Dowling textbook): 

strength coefficient: H = 413 MPa 
 strain hardening exponent: n = 0.0633 
           (Note: in accordance with eq 12.10, these values imply a yield strength of 294 MPa) 

                                                           
* These properties were inferred by Prof. M. Tuttle based on the data collected during the lab on Monday 27 January 
2003.  The properties you inferred from data you collected should be similar, but will probably not be numerically 
identical.    



 
● True stress-true curve modeled using the “Ramberg-Osgood Model” (i.e.,  eq. 12.13 in the 
Dowling textbook): 

strength coefficient: H = 407 MPa 
 strain hardening exponent: n = 0.0490 
 
Poisson's ratio was not measured; assume ν = 0.34.  One objective of this lab is to use these 
properties (i.e., properties measured during the tension test) to predict the T versus (θ/L) curve 
measured during the torsion test.  A formal lab report describing your work is due two weeks after 
your lab session.  The following two items must appear in your lab report:   
 
Table 1: A table with 6 columns is shown on the following page.  Complete the first 5 columns 
of this table using the data collected during the torsion test.  In the last column enter the torque 
predicted at the angle of twist based on the power-hardening model.  The steps that should be 
followed to obtain these predictions are summarized in a following section of this document, 
titled “Background Information”. 
 
Table 2: A table with 6 columns 
 
Item 3: Demonstrate whether the response of the cylindrical specimen subjected to a torque was 
well predicted using properties measured in tension by plotting measured and predicted torque 
versus (θ/L) on the same graph. 
 



Table 1: Experimental measurements and predicted torques based on the Power-Hardening model 
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Table 2: Experimental measurements and predicted torques based on the Ramberg-Osgood model 
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Background Information 
 
Preliminary Discussion:  
 
● In this lab we tested a cylindrical shaft of radius c and length L, subjected to a pure torque T.  
Calculation of the stresses and strains induced by this loading is based on the following 
experimental observation:  
 

"a radial line which is straight before loading remains a straight radial line after loading" 
 
This observation leads to the conclusion that the shear strain γ increases linearly with the radial 
distance from center of the shaft (r):  
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where θ is the angle of twist, measured in radians...that is, θ  is the angle that the cross-section at 
one end of the shaft has rotated with respect to the cross-section at the other end (θ was 
measured during the test...). Equation (1a) indicates that  
 

- xyγ is zero along the shaft centerline (at r = 0), and  

 
- xyγ  is a maximum at the outer surface of the shaft ( Lcxy /max θγγ ==  at r = c).  

 
Therefore Eq (1a) can also be written: 
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● Refer to Figure 3.12 and section 13.4.2 of the Dowling textbook.  The torque applied to a 
circular shaft is related to the shear stress induced at any radial position according to Eq 13.52 
(repeated here as Eq 2): 
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To evaluate this integral we must specify how stress is related to strain.  We will here consider 
three possibilities: (a) linear elastic, (b) nonlinear, power-hardening model, and (c) nonlinear, 
Ramberg-Osgood model. 
 
 



If the material is linear-elastic (which requires that stresses are relatively low such that yielding 
does not occur), then according to Hooke's Law ( xyxy Gγτ = ) the shear stress also increases 

linearly with r: 
 

L

Gr
G xyxy

θγτ ==      

 
This result can be rearranged as follows: 
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In this case integration of Eq (2) leads to the well-known "torsion formula":  
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Or, equivalently: 
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Now, the original experimental observation ("...straight radial lines remain straight radial 
lines...") holds true even if the shaft is plastically deformed.  Hence, Eq (1) is valid even if the 
shaft is loaded beyond the yield point.  However, Eqs (2-4) are based on the assumption of 
linear-elastic behavior, and therefore these equations are not valid once yielding has occurred.  
An idealized sketch showing the distribution of shear strains and stresses both before and after 
yielding is shown in Figure 2.  If stresses are low and yielding does not occur, then both shear 
stress and shear strains increase linearly from the shaft center, and reach maximum values at the 
outer radius.  However, after yielding only the shear strain increases linearly. After yielding an 
"elastic core" develops, and at radial positions outside this core the material has been plastically 
deformed and the shear stress distribution is nonlinear.  The radial position at which yielding is 
initiated can be predicted using Eq (3):  
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where oτ = the shear yield strength.  
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Figure 2: Distribution of shear stress and shear strain in a shaft with circular cross-section,  
       subjected to a torque T 
 
 
 
 



●  We will use the concept of "effective stress" and "effective strain" in our analysis.  The 
effective stress is listed in the Dowling textbook as Eq (7.37, 7.38):  
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Since we are interested in stresses well beyond yielding, it is appropriate to use true stresses in 
Eq (6): 
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“It can be shown” that the effective strain is related to true strains according to:  
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Equation (8) does not appear in the Dowling textbook, but is equivalent to Eq 12.22. 
 
 
****HERE ARE SOME IMPORTANT OBSERVATIONS ABOUT EFFECTIVE STRESS AND 
EFFECTIVE STRAIN**** 
 

 
● What was the effective stress during the uniaxial tensile test?  During the tension test the only 
stress applied was the axial true stress, xσ~ .  No other stresses were present:  

 
    0~~~~~ ===== zxyzxyzy τττσσ  

 
Substituting these conditions into Eq (7), we find: 
 

   xσσ ~=  

....during the tension test the effective stress σ was identical to the true stress xσ~  

 
● What was the effective strain during the uniaxial tensile test?  We measured the true axial 
strain, xε~ , during the tension test.  After yielding, 2/1→ν .  We can therefore assume that, after 

yielding: 
 

    
0~~~

2

~
~~

===

−
==

zxyzxy

x
zy

γγγ

εεε
 

Substituting these conditions into Eq (8), we find: 



 

   xεε ~=  

 

....after yielding during the tension test the effective strainε  was identical to the true axial strain 

xε~ . 

 
● What was the effective stress during the torsion test?  During the torsion test the only stress 
applied was the true shear stress, xyτ~ .   No other stresses were present during the torsion test:  

 
    0~~~~~ ===== zxyzzyx ττσσσ  

 
Substituting these conditions into Eq (7), we find: 
 

   xyτσ ~  3=  

.... during the torsion test the effective stress (σ ) equaled the true shear stress ( xyτ~ ) multiplied 

by a constant factor ( 3 ) 
 
● What was the effective strain during the torsion test?  The only strain induced during the 
torsion test was the true shear strain xyγ~ .  No other strains were present:   

 0~~~~~ ===== zxyzzyx γγεεε  

Substituting these conditions into Eq (8), we find: 
 

   xyγε ~
3

1=  

.... during the torsion test the effective strain (ε ) equaled the true shear strain ( xyγ~ ) multiplied 

by a constant factor ( 3/1 ). 
 

These observations are important during application of the “power-hardening” and “Ramberg-
Osgood” models, as discussed in the following subsections.  
 
 
 
 



Power-Hardening Model:  As a part of the uniaxial tensile test data reduction, we fit the 
measured true axial stress-true axial strain response for 6061-T6 aluminum to the following 
expression:  
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....that is, we have "measured" H and n for 6061-T6 aluminum. As pointed out above, during the 

tension test:  xσσ ~=  and xεε ~= .  Furthermore, during the torsion test: xyτσ ~  3=  and 

xyγε ~
3

1= .  We can therefore write the following:  
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**** Eq (10) relates the true shear stress ( xyτ~ ) and true shear strain ( xyγ~ ) present during the 

torsion test using material properties (H, n) measured during the tension test.**** 
 
 
We are now ready to predict the measured torque versus (θ/L) response.  The total applied torque 
equals the sum of the torque acting over the elastic core plus the torque acting over the 
plastically-deformed outer region:  
 
   plasticelastictotal TTT +=    (11) 
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The plastic region extends over crry << , and over this region  
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Equations (12) and (13) allow us to predict the torque versus (θ/L) response based on the Power-
Hardening model. To summarize: 
 
a) For a specified angle of twist per unit length, use Eq 5 to calculate the radial position at which 
yielding is predicted to occur:  
 
    Note:  

(a) if cr pred
y > , then yielding is not predicted...in other words, the stress-strain response 

is predicted to be linear across the entire cross-section. 
 

(b) if  cr pred
y < , then yielding is predicted.  In this case an elastic core (with radius 

pred
yr ) and outer plastically-deformed region (with inner and outer radii pred

yr  and c, 

respectively) is predicted.  
 
 
b) Calculate the predicted elastic torque, using Eq (4) or Eq (12) as appropriate, which  
    corresponds to the angle of twist per unit length. 
 
c). If yielding is predicted, calculate the predicted plastic torque using Eq (13) which corresponds  
    to the angle of twist per unit length 
 
d) Use Eq (11) to calculate the predicted total predicted torque that corresponds to the angle of 
twist per unit length.    
 
 
 



Ramberg-Osgood Model:  An alternate approach is to fit the tensile test data for 6061-T6 
aluminum to the Ramberg-Osgood model, using the process described in Section 12.2.4 of the 
Dowling textbook: 
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As discussed in Section 13.4.1, the concepts of effective stress and effective strain implies that 
for the torsion test: 
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The mathematical manipulation to follow is greatly simplified if we define a “shear” strength 
coefficient:  
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This allows us to write Eq (14) as: 
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We now wish to integrate Eq (2), using the stress-strain relationship defined by Eq (15).    First, 
using Eq (1b), note: 
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Since maxγ  is a constant (for a specified torque, T), and the radius c is obviously a constant, we 

have:  
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Combining Eq (2), (16) and (17):  
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Completing this integral it can (eventually!) be shown: 
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where: 
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Equations (18) and (19) allow us to predict the torque versus (θ/L) response based on the 
Ramberg-Osgood model. The process is summarized in Table 2: 
 
a) For a specified value of the shear stress induced at the outer radius ( cτ~ ; column 1, Table 2): 

 - calculate the corresponding plastic true strain using Eq 19b ( pcγ~  ; column 2, Table 2) 

 - calculate the corresponding elastic true strain using Eq 19c ( ecγ~  ; column 3, Table 2) 

 - calculate the corresponding total true strain induced at the outer radius using Eq 19d  
    ( cγ~  ; column 4, Table 2) 

 - calculate the corresponding )/( Lθ  using Eq 1 (column 5, Table 2) 
 
b) Calculate the corresponding predicted torque using Eq 18 (T, column 6, Table 2) 
  


