
10. COMPRESSION AND BUCKLING

Whenever a structural member is designed, it is necessary that it satisfies specific

strength, deflection and stability requirements.  Typically strength (or in some cases

fracture toughness) is used to determine failure, while assuming that the member will

always be in static equilibrium.  However, when certain structural members are subjected

to compressive loads, they may either fail due to the compressive stress exceeding the

yield strength (i.e., yielding) or they may fail due to lateral deflection (i.e., buckling). 

The maximum axial load that a structural component (a.k.a., column) can support

when it is on the verge of buckling is called the critical load, Pcr.  Any additional load

greater than P will cause the column to buckle and therefore deflect laterally.  Buckling is

a geometric instability and is related to material stiffness, column length, and column

cross sectional dimensions.  Strength does not play a role in buckling but does play a role

in yielding.

Recall a slender column under load with a restoring force related to lateral

deflection as shown in Fig. 10.1.  Two moments are generated about the pinned base, O.

The first moment is the restoring moment:

FL = K (∆x )L = K (Lθ)L = KL2θ (10.1)

where F is the restoring force, L is the length of the column, K is the spring constant, and θ
is the angle.   The second moment is the overturning moment:

P(∆x) = P(Lθ)L (10.2)

where P is the axial force.
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Figure 10.1 Model of a slender column under axial load with a restoring force/moment
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Figure 10.2  Illustration of stable and unstable conditions along with critical load

The following conditions apply as illustrated in Fig. 10.2:

If PLθ < KθL2 then P < KL and a stable condition results

If PLθ > KθL2 then P > KL and an unstable condition results
(10.3)

The critical load separating stability and instability is

Pcr = KL (10.4)

This situation can also be thought of as a ball on a surface as shown in Fig. 10.3.

The ideal column (pinned at both ends as shown in Fig. 10.4) can be modeled

mathematically using the equation of the elastic curve.  Note that assumptions for the

ideal column include: i) column is initially perfectly straight, ii) load is applied through the

center of the cross section, iii) material is homogeneous and linear elastic, and iv) column

buckles and bends in a single plane.   The elastic curve equation is:

EIv '' = −M (10.5)

where E is the elastic modulus, I is the moment of inertia, v''=
d2v

dx2 , and M is the internal

moment introduced by defection, v, and the applied load, P, such that M=Pv.
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Figure 10.3 Illustration of stable, unstable and neutral conditions
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Figure 10.4  Ideal column and internal force/moment

Substituting this relation for M into Eq. 10.5 gives

EIv '' = −Pv ⇒ v '' +
P

EI
v = 0 (10.6)

Equation 10.6 is a homogeneous, second-order, linear differential equation with

constant coefficients.  The general solution for this equation is:

v = C1sin
P

EI
x

 
 
  

 
 +C 2 cos

P

EI
x

 
 
  

 
 (10.6)

The constants of integration are found from the boundary conditions at the ends of

the column.  Since v=0 at x=0, then C2=0.  In addition, at x=L, v=0.  In this case the trivial

solution is that C1=0 which means that the column is always straight.  The other possibly

is that sin
P

EI
L

 
 
  

 
 =0 which is satisfied if 

P

EI
L =nπ.  This solution can be rearranged such

that

P =
n2π 2EI

L2 (10.7)

The smallest value of P (in other words, the value of P reached first when loading from

P=0 to some critical load) is obtained when n=1, so that the critical load for the column

(known as the Euler load) is:

Pcr =
π2EI

L2 (10.8)
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Note that this critical load is independent of the strength of the material, but rather

depends on the column dimensions (actual length, L, and smallest moment of inertia, I)

and material stiffness, E.  Note also that load-carrying ability increases as the moment of

inertia increases, as elastic modulus increases but at length decreases.  Thus, short, fat

columns made of stiff material will have very low tendency to buckle.  A key to

understanding buckling is to create a design whereby the required (i.e., applied) design

load is always much less than the theoretical buckling load.  The reasons for this are that

the theoretical buckling load is determined based on an ideal column with many inherent

assumptions.  Thus, a large safety margin must be placed between the design load and

the calculated critical buckling load.

Equation 10.8 is the solution for an ideal column with pinned/pinned end

conditions.  If other boundary conditions are applied then the following critical load

equations result for the indicated end conditions.

Pcr =
π2EI

L2             Pinned −Pinned

Pcr = π2EI

4L2
             Free −F ixed

Pcr =
4π 2EI

L2            Fixed −Fixed

Pcr =
2.046π 2EI

L2     Pinned − Fixed

(10.9)

The equations in Eq. 10.9 are a bit cumbersome because four different relations
need to be remembered.   So instead an effective length is defined such that Le = KL .

Now a single equation can be used to replace the four equations of Eq. 10.9 and effective

length constants, K, for each end condition can be used to define the effective length.  The

effective length constants are as shown in Fig. 10.5 and the single equation is:

Pcr =
π2EI

Le

2 =
π 2EI

(KL)2 (10.10)

For purposes of design, it is more useful to express the critical loading condition in

terms of a stress such that:

σcr =
Pcr

A
=

π 2EI

ALe

2 ⇒ σcr =
π2E

(Le / k)2 (10.11)

where k= I / A  is the smallest radius of gyration determined from the least moment of
inertia, I, for the cross section.  The term, Le /k  is known as the slenderness ratio and

contains information about the length and the cross section.
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Figure 10.5 Effective length constants for various end conditions

It is interesting to investigate the case where the applied stress, σ , is equal to the

critical buckling stress, σcr , and the generalized yield strength, σo  .  At this point there is a

transition between yield and buckling:

σ = σo = σcr ⇒ σo =
π2E

(Le / k )2
(10.12)

If Eq. 10.12 is solved for Le /k , the resulting relation marks the combination of

length and cross section at which the compressive behaviour transitions from yielding to

buckling.  This relation is known as the minimum slenderness ratio:

Le

k min
=

π 2E

σo
(10.13)

This transition can be illustrated by plotting the relation between stress, σ , and

slenderness ratio, Le /k , as shown in Fig. 10.6.  Note that in reality there is no sharply
divided transition between yielding and buckling.  Instead the σ  vs. Le /k  curve can be

divided into three regions as shown in Fig. 10.7.  Region I is the short-column region in
which general yielding occurs when σ =σo .  Region II is an intermediate-column region

in which i) the column may yield or may buckle and ii) empirical relations are used to

approximate the resulting curve.  Region III is for long columns and buckling will occur.
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Figure 10.6 Stress vs. slenderness ratio relation

Regions I and III are straight forward to determine (either apply  σ =σo . in Region

I or σcr =
π2E

(Le /k)2  in Region III).  Region II is material/ geometry/loading dependent and

empirical relations are often used.  One approach is to fit a parabola to the σ  vs. Le /k

curve from σ =σo . to σ =σo  / 2 such that.

σ = σo 1−
Le / k( )2

2Le / k min( )2
 

 
 

 

 
   for     0 ≤ Le

k
≤ Le

k min

and

σ =
π2E

(Le / k)2                      for     
Le
k

>
Le
k min

(10.14)
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Figure 10.7 Stress vs. slenderness ratio relation with parabolic fit in Region II
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In summary, note that buckling loads and stresses are sensitive to the following

1) stiffness of material

2) length of column

3) cross section dimensions

4) cross sectional shape

5) end conditions

6) initial eccentricity

7) eccentric loading

8) end conditions

Thus, the moral of the story is to always keep design loads well below the calculated

critical buckling loads.
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