
12.1

12. Pressure Vessels: Combined Stresses

Cylindrical or spherical pressure vessels (e.g., hydraulic  cylinders, gun barrels,

pipes, boilers and tanks) are commonly used in industry to carry both liquid s and gases

under pressure.  When the pressure vessel is exposed to this pressure, the material

comprising the vessel is subjected to pressure loading, and hence stresses, from all

directions.   The normal stresses resulting from  this pressure are functions of the radius of

the element under consideration, the shape of the pressure vessel (i.e., open ended

cylinder, closed end cylinder, or sphere) as well as the applied pressure.  

Two types of analysis are commonly  applied to pressure vessels.  The most

common method is based on a simple mechanics approach and is applicable to “thin

wall” pressure vessels which by definition have a ratio of inner radius, r,  to wall thickness,

t, of r/t≥10.  The second method is based on elasticity solution and is always applicable

regardless of the r/t ratio and can be referred to as the solution for “thick wall” pressure

vessels.  Both types of analysis are discussed here, although for most engineering

applications, the thin wall pressure  vessel can be used.

Thin-Walled Pressure Vessels

Several assumptions are made in this method.  

1) Plane sections remain plane

2) r/t ≥ 10 with t being uniform and constant

3) The applied pressure, p, is the gage pressure (note that p is the

difference between the absolute pressure and the atmospheric pressure)

4) Material is linear-elastic, isotropic  and homogeneous.

5) Stress distributions throughout the wall thickness will not vary

6) Element of interest is remote from the end of the cylinder and  other

geometric  discontinuities.

7) Working fluid has negligible weight

Cylindrical Vessels:  A cylindrical pressure with wall  thickness, t, and inner radius,

r, is considered, (see Figure 12.1).  A gauge pressure , p, exists within the vessel by the

working fluid (gas or liquid).  For an element sufficiently removed from the ends of the

cylinder and oriented  as shown in Figure 12.1, two types of normal stresses are
generated: hoop, σ h, and axial, σ a, that both exhibit tension of the material.
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Figure 12.1 Cylindrical Thin-Walled Pressure Vessel

For the hoop stress, consider the pressure vessel section by planes sectioned by planes

a, b, and c for Figure 12.2.  A free body diagram of a half segment along with the

pressurized working fluid is shown  in Fig. 12.3   Note that only the loading in the x-

direction is shown and that the internal reactions in the material are due to hoop stress

acting on incremental areas, A, produced by the pressure acting on projected area, Ap.

For equilibrium in the x-direction we sum forces on the incremental segment of width dy to

be equal to zero such that:
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where dy = incremental length, t = wall thickness, r = inner radius, p = gauge pressure,
and  σ h is the hoop stress.

Figure 12.2 Cylindrical Thin-Walled Pressure Vessel  Showing Coordinate Axes and

Cutting Planes (a, b, and c)
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Figure 12.3 Free-Body Diagram of Segment of Cylindrical Thin-Walled Pressure Vessel

Showing Pressure and Internal Hoop Stresses

For the axial stress, consider the left portion of section b of the cylindrical pressure

vessel shown in Figure 12.2.  A free body diagram of a half segment along with the

pressurized working fluid is shown  in Fig. 12.4   Note that the axial stress acts uniformly

throughout the wall and the pressure acts on the endcap of the cylinder.  For equilibrium

in the y-direction we sum forces such that:
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where ro = inner radius andσ a is the axial stress.
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Figure 12.4 Free-Body Diagram of End Section of Cylindrical Thin-Walled Pressure

Vessel  Showing Pressure and Internal Axial Stresses

Note that in Equations 12.1 and 12.2, the hoop stress is twice as large as the axial

stress.  Consequently, when fabricating cylindrical pressure vessels from rolled-formed

plates, the longitudinal joints must be designed to carry twice as much stress as the

circumferential joints.

Spherical Vessels: A spherical pressure vessel can be analyzed in a similar

manner as for the cylindrical pressure vessel.  As shown in Figure 12-5, the “axial” stress

results from the action of the pressure acting on the projected area of the sphere such that
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Note that for the spherical pressure vessel, the hoop and axial stresses are equal

and are one half of the hoop stress in the cylindrical pressure vessel.  This makes the

spherical pressure vessel a more “efficient” pressure vessel geometry.
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Figure 12.5 Free-Body Diagram of End Section of Spherical Thin-Walled Pressure Vessel

Showing Pressure and Internal Hoop and Axial Stresses

The analyses of Equations 12.1 to 12.3 indicate that an element in either a

cylindrical or a spherical pressure vessel is subjected to biaxial stress (i.e., a normal

stress existing in only two directions).  In reality, the element is subjected to a radial stress,
σ rwhich acts along a radial line.  The stress has a compressive value equal to the

pressure, p, at the inner wall, and decreases through the wall to zero at the outer wall

(plane stress  condition) since the gage pressure there is zero.  For thin walled pressure

vessels, the radial component is assumed to equal zero throughout the wall since the
limiting assumption of r/t=10 results in σ h being 10 times greater than σ r=p and σ a being

5 time greater than σ r=p.  Note also that the three normal stresses are principal stresses

and can be used directly to determine failure criteria.

Note that the relations of Equation 12.1 to 12.3 are for internal gauge pressures

only.  If the pressure vessel is subjected to an external pressure, it may cause the

pressure vessel to become unstable and collapse may occur by buckling of the wall.

Thick-Walled Pressure Vessels

Closed-form, analytical solutions of stress states can be derived using methods

developed in a special branch of engineering mechanics called elasticity.  Elasticity

methods are beyond the scope of the course although elasticity solutions are

mathematically exact for the specified boundary conditions are particular problems.  For

cylindrical pressure vessels subjected to an internal gage pressure only the following

relations result:
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where ro=outer radius, ri=inner radius, and r is the radial variable.  Equations 12.4 apply

for any wall thickness and are not restricted to a particular r/t ratio as are the Equations
12.1 and 12.2.  Note that the hoop and radial stresses(σ h and σ r) are functions of r (i.e.

vary through the wall thickness) and that the axial stress, σ a, is independent of r (i.e., is

constant through the wall thickness.  Figure 12.6 shows the stress distributions through

the wall thickness for the hoop and radial stresses.  Note that for the radial stress

distributions, the maximum and minimum values occur, respectively, at the outer wall
(σ r=0) and at the (σ r=-p) as noted already for the thin walled pressure vessel.

Equations 12.4 can be generalized for the case of internal and external pressures

such that
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where po=is the outer gauge pressure and, pi=inner gage pressure.

a) hoop stress b) radial stress

Figure 12.6 Stress distributions of hoop and radial stresses
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Combined Loading

Typical formulae for stresses in mechanics of materials are developed for specific

conditions.  For example

Axial Loading, 

Beam Bending, and 

Direct Shear, 

Torsional Shear, 

Pressure Vessels, Shear, 
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Often, the cross section of a member is subjected to several types of loadings

simultaneously and as a result the method of superposition can be applied to determine

the resultant stress distribution caused by the loads.  In superposition, the stress

distribution due to each loading is first determined, and then these distributions are

superimposed to determine the resultant stress distributions.  Note that only stresses of

the same type and in the same direction can be superimposed.  The principle of

superposition can be used for the purpose provided that  a linear relationship exists

between the stress and the loads.  In addition, the geometry of the member should not

undergo significant change when the loads are applied.  This is necessary in order to

endure that the stress produced by one load is not related to the stress produced by any

other loads.  The following procedure is taken from (Hibbeler, 1997)
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