
3. BEAMS: STRAIN, STRESS, DEFLECTIONS

The beam, or flexural member, is frequently encountered in structures and

machines, and its elementary stress analysis constitutes one of the more interesting facets

of mechanics of materials.  A beam is a member subjected to loads applied transverse to

the long dimension, causing the member to bend.  For example, a simply-supported beam

loaded at its third-points will deform into the exaggerated bent shape shown in Fig. 3.1

Before proceeding with a more detailed discussion of the stress analysis of beams,

it is useful to classify some of the various types of beams and loadings encountered in

practice.  Beams are frequently classified on the basis of supports or reactions.  A beam

supported by pins, rollers, or smooth surfaces at the ends is called a simple beam.  A

simple support will develop a reaction normal to the beam, but will not produce a moment

at the reaction.  If either, or both ends of a beam projects beyond the supports, it is called

a simple beam with overhang.  A beam with more than simple supports is a continuous

beam.  Figures 3.2a, 3.2b, and 3.2c show respectively, a simple beam, a beam with

overhang, and a continuous beam.  A cantilever beam is one in which one end is built into

a wall or other support so that the built-in end cannot move transversely or rotate.  The

built-in end is said to be fixed if no rotation occurs and restrained if a limited amount of

rotation occurs.  The supports shown in Fig. 3.2d, 3.2e and 3.2f represent a cantilever

beam, a beam fixed (or restrained) at the left end and simply supported near the other end

(which has an overhang) and a beam fixed (or restrained) at both ends, respectively.

Cantilever beams and simple beams have two reactions (two forces or one force

and a couple) and these reactions can be obtained from a free-body diagram of the beam

by applying the equations of equilibrium.  Such beams are said to be statically

determinate since the reactions can be obtained from the equations of equilibrium.

Continuous and other beams with only transverse loads, with more than two reaction

components are called statically indeterminate since there are not enough equations of

equilibrium to determine the reactions.

Figure 3.1 Example of a bent beam (loaded at its third points)
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Figure 3.2  Various types of beams and their deflected shapes: a) simple beam, b) beam

with overhang, c) continuous beam, d) a cantilever beam, e) a beam fixed (or restrained)

at the left end and simply supported near the other end (which has an overhang), f) beam

fixed (or restrained) at both ends.

Examining the deflection shape of Fig. 3.2a, it is possible to observe that

longitudinal elements of the beam near the bottom are stretched and those near the top

are compressed, thus indicating the simultaneous existence of both tensile and

compressive stresses on transverse planes.  These stresses are designated fibre or

flexural stresses.  A free body diagram of the portion of the beam between the left end and

plane a-a is shown in Fig. 3.3.  A study of this section diagram reveals that a transverse

force Vr and a couple Mr at the cut section and a force, R, (a reaction) at the left support

are needed to maintain equilibrium.  The force Vr is the resultant of the shearing stresses

at the section (on plane a-a) and is called the resisting shear and the moment, Mr, is the

resultant of the normal stresses at the section and is called the resisting moment.
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Figure 3.3  Section of simply supported beam.

The magnitudes and senses of Vr and Mr may be obtained form the equations of
equilibrium Fy = 0∑     and MO = 0∑    where O is any axis perpendicular to plane xy (the

reaction R must be evaluated first from the free body of the entire beam).  For the present

the shearing stresses will be ignored while the normal stresses are studied.  The

magnitude of the normal stresses can be computed if Mr is known and also if the law of

variation of normal stresses on the plane a-a is known.  Figure 3.4 shows an initially

straight beam deformed into a bent beam.

A segment of the bent beam in Fig. 3.3 is shown in Fig. 3.5 with the distortion highly

exaggerated.  The following assumptions are now made

i) Plane sections before bending, remain plane after bending as shown in 

Fig. 3.4 (Note that for this to be strictly true, it is necessary that the beam be 

bent only with couples (i.e., no shear on transverse planes), that the beam 

must be proportioned such that it will not buckle and that the applied loads 

are such that no twisting occurs.

Figure 3.4 Initially straight beam and the deformed bent beam
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Figure 3.5 Distorted section of bent beam

ii) All longitudinal elements have the same length such the beam is initially 

straight and has a constant cross section.

iii) A neutral surface is a curved surface formed by elements some distance, 

c, from the outer fibre of the beam on which no change in length occurs.  The

intersection of the neutral surface with the any cross section is the neutral 

axis of the section.

Strain

Although strain is not usually required for engineering evaluations (for example,

failure theories), it is used in the development of bending relations.  Referring to Fig. 3.5,

the following relation is observed:

δy

y
  =

δc

c
(3.1)

where δy  is the deformation at distance y from the neutral axis and δc  is the deformation

at the outer fibre which is distance c from the neutral axis.  From Eq. 3.1, the relation for

the deformation at distance y from the neutral axis is shown to be proportional to the

deformation at the outer fibre:

δy  =
δc

c
y (3.2)

Since all elements have  the same initial length, ∆x , the strain at any element can

be determined by dividing the deformation by the length of the element such that:

δy

∆x
  =

y
c

δc

∆x
⇒ ε = y

c
εc (3.3)
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Figure 3.6 Undeformed and deformed elements

Note that ε  is the in the strain in the x direction at distance y from the neutral axis and that
ε =ε x .  Note that Eq. 3.3 is valid for elastic and inelastic action so long as the beam does

not twist or buckle and the transverse shear stresses are relatively small.

An alternative method of developing Eq. 3.3 involves the definition of normal strain.

An incremental element of a beam is shown both undeformed and deformed in Fig. 3.6.

Note once again that any line segment ∆x  located on the neutral surface does not

changes its length whereas any line segment ∆s  located at the arbitrary distance y from

the neutral surface will elongate or contract and become ∆s'  after deformation.  Then by

definition, the normal strain along ∆s  is determined as:

ε = lim
∆s→0

∆s' −∆s

∆s
(3.4)

Strain can be represented in terms of distance y from the neutral axis and radius of
curvature ρ  of the longitudinal axis of the element.  Before deformation ∆s = ∆x  but after

deformation ∆x  has radius of curvature ρ  with center of curvature at point O'.  Since ∆θ
defines the angle between the cross sectional sides of the incremental element,
∆s = ∆x = ρ ∆θ .  Similarly, the deformed length of ∆s  becomes ∆s'= ρ − y( ) ∆θ .

Substituting these relations into Eq. 3.4 gives:

ε = lim
∆θ→0

ρ − y( )∆θ − ρ ∆θ
ρ ∆θ

(3.5)
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Eq. 3.5 can be arithmetically simplified as ε = −y / ρ .  Since the maximum strain
occurs at the outer fibre which is distance c from the neutral surface, εmax = −c / ρ = εc ,

the ratio of strain at y to maximum strain is

ε
εmax

= −y / ρ
−c / ρ (3.6)

which when simplified and rearranged gives the same result as Eq. 3.3:

ε =
y
c

 
 

 
 εmax =

y

c
 
 

 
 εc (3.7)

Note that an important result of the strain equations for ε = −y / ρ  and εmax = −c / ρ = εc

indicate that the longitudinal normal strain of any element within the beam depends on its

location y on the cross section and the radius of curvature of the beam's longitudinal axis

at that point.  In addition, a contraction (-ε  ) will occur in fibres located "above" the neutral

axis (+y) whereas elongation (+ε  ) will occur in fibres located "below" the neutral axis (-y).

Stress

The determination of stress distributions of beams in necessary for determining the

level of performance for the component.  In particular, stress-based failure theories

require determination of the maximum combined stresses in which the complete stress

state must be either measured or calculated.
Normal Stress: Having derived the proportionality relation for strain, εx  , in the x-

direction, the variation of stress, σ x  , in the x-direction can be found by substituting σ  for

ε  in Eqs. 3.3 or 3.7.  In the elastic range and for most materials uniaxial tensile and

compressive stress-strain curves are identical.  If there are differences in tension and

compression stress-strain response, then stress must be computed from the strain

distribution rather than by substitution of σ  for ε  in Eqs. 3.3 or 3.7.
Note that for a beam in pure bending since no load is applied in the z-direction, σ z

is zero throughout the  beam.  However, because of loads applied in the y-direction to
obtain the bending moment, σ y  is not zero, but it is small enough compared to σ x  to

neglect.  In addition, σ x  while varying linearly in the y direction is uniformly distributed in

the z-direction.  Therefore, a beam under only a bending load will be in a uniaxial, albeit a

non uniform, stress state.
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Figure 3.7  Stress (force) distribution in a bent beam

Note that for static equilibrium, the resisting moment, Mr, must equal the applied
moment, M, such that MO = 0∑    where (see Fig. 3.7):

Mr = dFy =
A
∫ σdAy

A
∫ (3.8)

and since y is measured from the neutral surface, it is first necessary to locate this surface
by means of the equilibrium equation Fx = 0∑    which gives σdA = 0

A
∫   .  For the case of

elastic action the relation between σ x  and y can be obtained from generalized Hooke's

law σ x =
E

1+ν( ) 1−2ν( ) 1−ν( )εx +ν εy +εz( )[ ]  and the observation that εy = εz = −νεx .

The resulting stress-strain relation is for the uniaxial stress state such that σ x = Eεx

which when substituted into Eq. 3.3 or 3.7 gives

σ x =E
εc

c

 
 
  

 
 y =

σc

c
y (3.9)

Substituting Eq. 3.9 into Eq. 3.8 gives:

Mr = σdAy
A
∫ = σc

c
y

2
dA =

A
∫

σ x

y
y

2
dA

A
∫ (3.10)

Note that the integral is the second moment of the cross sectional area, also known as the

moment of inertia, I, such that

I = y
2
dA

A
∫ (3.11)
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Figure 3.8 Action of shear stresses in unbonded and bonded boards

Substituting Eq. 3.11 into Eq. 3.10 and rearranging results in the elastic flexure

stress equation:

σ x = My
I

(3.12)

where σ x  is the normal bending stress at a distance y from the neutral surface and acting

on a transverse plane and M is the resisting moment of the section.  At any section of the

beam, the fibre stress will be maximum at the surface farthest from the neutral axis such

that.

σ max = Mc
I

= M
Z

(3.13)

where Z=I/c is called the section modulus of the beam.  Although the section modulus

can be readily calculated for a given section, values of the modulus are often included in

tables to simplify calculations.

Shear Stress: Although normal bending stresses appear to be of greatest concern

for beams in bending, shear stresses do exist in beams when loads (i.e., transverse

loads) other than pure bending moments are applied.  These shear stresses are of

particular concern when the longitudinal shear strength of materials is low compared to

the longitudinal tensile or compressive strength (an example of this is in wooden beams

with the grain running along the length of the beam).  The effect of shear stresses can be

visualized if one considers a beam being made up of flat boards stacked on top of one

another without being fastened together and then loaded in a direction normal to the

surface of the boards.  The resulting deformation will appear somewhat like a deck of

cards when it is bent (see Fig. 3.8a).  The lack of such relative sliding and deformation in

an actual solid beam suggests the presence of  resisting shear stresses on longitudinal

planes as if the boards in the example were bonded together as in Fib. 3.8b. The resulting

deformation will distort the beam such that some of the assumptions made to develop the

bending strain and stress relations (for example, plane sections remaining plane) are not

valid as shown in Fig. 3.9.
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Figure 3.9 Distortion in a bend beam due to shear

The development of a general shear stress relation for beams is again based on
static equilibrium such that F = 0∑ .  Referring to the free body diagram shown in Fig.

3.10, the differential force, dF1 is the normal force acting on a differential area dA and is
equal to σ dA .  The resultant of these differential forces is F1 (not shown).  Thus,

F1 = σ dA∫  integrated over the shaded area of the cross section, where σ  is the fibre

stress at a distance y from the neutral surface and is given by the expression σ =
My
I

 .

Figure 3.10 Free body diagram for development of shear stress relation
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When the two expressions are combined, the force, F1, becomes:

F1 = M
I

y dA=M
I

  ty dy
h

c
∫∫ (3.14)

Similarly, the resultant force on the right side of the element is

F2 = M+∆M( )
I

 ty dy
h

c

∫ (3.15)

The summation of forces in the horizontal direction on Fig. 3.10 gives

VH = F2 −F1 = ∆M
I

 ty dy
h

c

∫ (3.16)

The average shear stress is VH divided by the area from which

τ = lim
∆x →0

∆M
∆x

1
It

 
  

 
   ty dy

h

c

∫ =
dM
dx

1
It

 
  

 
   ty dy

h

c

∫ (3.17)

Recall that V=dM/dx, which is the shear at the beam section where the stress is being

evaluated.  Note that the integral, Q=  ty dy
h

c

∫  is the first moment of that portion of the cross

sectional area between the transverse line where the stress is being evaluated and the

extreme fiber of the beam.  When Q and V are substituted into Eq. 3.17, the formula for the

horizontal / longitudinal shear stress is:

τ = VQ
It

(3.18)

Note that the flexure formula used in this derivation is subject to the same

assumptions and limitations used to develop the flexure strain and stress relations.  Also,

although the stress given in Eq. 3.18 is associated with a particular point in a beam, it is

averaged across the thickness, t, and hence it is accurate only if t is not too great.  For

uniform cross sections, such as a rectangle, the shear stress of Eq. 3.18 takes on a
parabolic distribution, with τ =0 at the outer fibre (where y=c and σ =σ max ) and

τ =τmax  at the neutral surface (where y=0 and σ =0) as shown in Fig. 3.11.
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Y τ = 0

τ = 0

τ = τ Ν/Ασ = 0

σ = σ

σ = σ

max

max

min

Figure 3.11 Shear and normal stress distributions in a uniform cross section beam

Finally, the maximum shear stress for certain uniform cross section geometries can

be calculated and tabulated as shown in Fig. 3.12.  Note that a first order approximation

for maximum shear stress might be made by dividing the shear force by the cross

sectional area of the beam to give an average shear stress such that τav ≈ V

A
.  However,

if the maximum shear stress is interpreted as the critical shear stress, than an error of 50%

would result for a beam with a rectangular cross section where τmax ≈ 3V
2A

 which is 1.5

times τav ≈ V

A
.

 τmax
3V
2A

=

 τmax
4V
3A

=

 τmax
2V
  A

=

h

b

A=bh

A=(   /4) dπ 2

A=(   /4) (d    -   d   )π 22
o i

d

d

d
o

i

Figure 3.12 Maximum shear stresses for some common uniform cross sections
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Deflections

Often limits must be placed on the amount of deflection a beam or shaft may

undergo when it is subjected to a load.  For example beams in many machines must

deflect just the right amount for gears or other parts to make proper contact.  Deflections of

beams depend on the stiffness of the material and the dimensions of the beams as well as

the more obvious applied loads and supports.  In order of decreasing usage four common

methods of calculating beam deflections are: 1) double integration method, 2)

superposition method, 3) energy (e.g., unit load) method, and 4) area-moment method.

The double integration method will be discussed in some detail here.

Deflections Due to Moments: When a straight beam is loaded and the action is

elastic, the longitudinal centroidal axis of the beam becomes a curve defined as "elastic

curve."  In regions of constant bending moment, the elastic curve is an arc of a circle of
radius, ρ , as shown in Fig. 3.13 in which the portion AB of a beam is bent only with

bending moments.  Therefore, the plane sections A and B remain plane and the

deformation (elongation and compression) of the fibres is proportional to the distance

from the neutral surface, which is unchanged in length.  From Fig. 3.13:

θ = L
ρ

=
L + δ
ρ + c

(3.19)

from which
c
ρ

= δ
L

= ε = σ
E

= Mc
EI

(3.20)

and finally
1
ρ

= M
EI

(3.21)

which relates the radius of curvature of the neutral surface of the beam to the bending

moment, M, the stiffness of the material, E, and the moment of inertia of the cross section,

I.

Figure 3.13 Bent element from which relation for elastic curve is obtained
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Equation 3.21 is useful only when the bending moment is constant for the interval

of the beam involved.  For most beams the bending moment is a function of the position

along the beam and a more general expression is required.

The curvature equation from calculus is

1
ρ

= d2y / dx2

1+ dy / dx( )2[ ]3/2 (3.22)

which for actual beams can be simplified because the slope dy/dx is small and its square

is even smaller and can be neglected as a higher order term.  Thus, with these

simplifications, Eq. 3.22 becomes

1
ρ

= d2y

dx 2 = y ' ' (3.23)

Substituting Eq. 3.23 into Eq. 3.21 and rearranging gives

EI
d2y

dx2 = Mx = EIy' ' (3.24)

which is the differential equation for the elastic curve of a beam.

An alternative method for obtaining Eq. 3.24 is to use the geometry of the bent

beam as shown in Fig. 3.14 where it is evident that dy/dx = tan θ  ≈ θ  for small angles and

that d2y /dx 2 = dθ /dx .  From Fig. 3.14 it can be shown that

dθ =
dL
ρ

=
dx
ρ

(3.25)

for small angles and therefore.

y' ' =
d2y

dx 2 = dθ
dx

= 1
ρ

= M x

EI
⇒ EI

d2y

dx2 = EIy' ' = Mx (3.26)

For the coordinate system shown in Fig. 3.15, the signs of the moment and second

derivative are as shown.  It is also important to note the following physical quantities and

beam action.

Figure 3.14 Bent beam from which relation for elastic curve is obtained.
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Figure 3.15 Sign conventions used for deflection

deflection = y

slope =
dy
dx

= y '

moment = Mx =EI
d2y

dx 2 = EIy' '

shear =
dM
dx

=EI
d3y

dx3
= EIy' ' ' (for constant EI)

load =
dV
dx

=EI
d4y
dx4

= EIyiv(for constant EI)

(3.27)

It is interesting to note that from Eqs. 3.24 and 3.26 can be written as

Mx = EI
dθ
dx

(3.28)

from which

dθ
θA

θB

∫ = M x

EI
dx

xA

xB

∫ (3.29)

Eqs. 3.28 and 3.29 show that except for the factor EI, the area under the moment

diagram between any two points along the beam gives the change in slope between the

same two points.  Likewise, the area under the slope diagram between two points along a

beam gives the change in deflection between these points.  These relations have been

used to construct the series of diagrams shown in Fig. 3.16 for a simply supported beam

with a concentrated load at the center of the span.  The geometry of the beam was used to

locate the points of zero slope and deflection, required as the starting points for the

construction.
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Figure 3.16  Illustration of various elastic relations for a beam in three-point loading

It is important to remember that the calculation of deflections from elastic curve

relations is based on the following assumptions:

1) The square of the slope of the beam is assumed to be negligible 

compared to unity

2) The beam deflection due to shear stresses is negligible (i.e., plane 

sections remain plane)

3) The value of E and I remain constant for any interval along the beam.

The double integration method can be used to solve Eq. 3.24 for the deflection y as

a function of distance along the beam, x.  The constants of integration are evaluated by

applying the applicable boundary conditions.

Boundary conditions are defined by a known set of values of x and y or x and dy/dx

at a specific point in the beam.  One boundary condition can be used to determine one

and only one constant of integration.  A roller or pin at any point in a beam (see Figs.

3.17a and 3.17b) represents a simple support which cannot deflect (y=0) but can rotate

(dy/dx≠0).  At a fixed end (see Figs. 3.17c and 3.17d) the beam can neither deflect or

rotate (y=0 and dy/dx=0).

Matching conditions are defined as the equality of slope or deflection, as

determined at the junction of two intervals from the elastic curve equations for both

intervals.
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Figure 3.17  Types of boundary conditions

Calculating deflection of a beam by the double integration method involves four

definite steps and the following sequence for these steps is recommended.

1) Select the interval or intervals of the beam to be used; next, place a set of 

coordinate axes on the beam with the origin at one end of an interval and then 

indicate the range of values of x in each interval.  For example, two adjacent 

intervals might be:  0≤x≤L and L≤x≤3L

2) List the available boundary conditions and matching conditions (where two or 

more adjacent intervals are used) for each interval selected.  Remember that two 

conditions are required to evaluate the two constants of integration for each interval

used.

3) Express the bending moment as a function of x for each interval selected, and 

equate it to EI dy2/dx2 =EIy''.

4) Solve the differential equation or equations form item 3 and evaluate all 

constants of integration.  Check the resulting equations for dimensional 

homogeneity.  Calculate the deflection a specific points where required.

Deflections due to Shear: Generally deflections due to shear can be neglected as

small (<1%) compared to deflections due to moments.  However, for short, heavily-loaded

beams, this deflection can be significant and an approximate method can be used to

evaluate it.  The deflection of the neutral surface, dy due to shearing stresses in the

interval dx along the beam in Fig. 3.18  is

dy = γdx =
τ
G

dx =
VQ

GIt
dx (3.30)

from which the shear in Fig. 3.18 is negative such that

GIt

Q

dy

dx
= −V ⇒

GIt

Q
y' = −V (3.31)
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Since the vertical shearing stress varies from top to bottom of a beam the deflection

due to shear is not uniform.  This non uniform distribution is reflected as slight warping of

a beam.  Equation 3.31 gives values too high because the maximum shear stress (at the

neutral surface) is used and also because the rotation of the differential shear element is

ignored.  Thus, an empirical relation is often used in which a shape factor, k, is employed

to account for this change of shear stress across the cross section such that

kAGy' = −V ⇒ y'=
−V

kAG
(3.32)

Often k is approximated as k≈1 but for box-like sections or webbed sections it is

estimated as:

1

k
=

A total

Aweb
(3.33)

A single integration method can be used to solve Eq. 3.32 for the deflection due to shear.

The constants of integration are then determined by employing the appropriate boundary

and matching conditions.  The resulting equation provides a relation for the deflection due

to shear as a function of the distance x along the length of the beam.  Note however that

unless the beam is very short or heavily loaded the deflection due to shear is generally

only about 1% of the total beam deflection.

Figure 3.18 Deflection due to shear stress
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An example of the use of integration methods is as follows for a simply supported

beam in three-point loading.  The loading condition, free body, shear and moment

diagrams are shown in Fig. 3.19.

a b

a+b=L

P

R1 R2

P

Loading Diagram

Free Body Diagram

Shear Diagram

Moment Diagram

=Pb/L =Pa/L

Pb/L

Pa/L

Pbx/L

x

0 ≤ x ≤ a x=a a0 ≤ x ≤ L

(Pbx/L)-P(x-a)

Pba/L

Figure 3.19  Loading condition, free body, shear and moment diagrams

There are two boundary conditions: at x=0, y1=0 and at x=L, y2=0

There are two matching conditions: at x=a, y'1=y'2 and at x=a, y1=y2
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For 0 ≤ x≤ a (region 1) For a≤ x≤ L (region 2)

V= Pb/L V= Pa/L
M=Pbx/L M=(Pbx/L)-P(x-a)

Double Integration Method Double Integration Method

EIy1' ' = −M = −
Pbx

L
EIy2 '' = −M = −

Pbx

L
+ P(x − a)

EIy1' '∫ =
-Pbx

L
⇒ EIy1' =∫

-Pbx2

2L
+ C1 EIy2 ''∫ =

−Pbx

L
+ P(x − a) ⇒∫

                        EIy2 ' =
−Pbx 2

2L
+

P(x − a)2

2
+ C2EIy1'∫ =

−Pbx2

2L
+ C1 ⇒∫

                              EIy1 =
−Pbx3

6L
+ C1x + C3

EIy2 '∫ =
−Pbx2

2L
+

P(x -a)2

2
+C2 ⇒∫

               EIy2 =
−Pbx3

6L
+

P(x -a)3

6
+ C2x + C4

                                                                                                                                                                                   

Applying the matching conditons at x=a, y'1=y'2

y1'=
1

EI

-Pba2

2L
+ C1

 

  
 

  =
1

EI

-Pba2

2L
+

P a-a( )2

2
+C2

 

  
 

  = y2 '

so that C1 = C2

and at x=a, y1=y2

y1 =
1

EI

−Pba3

6L
+ C1a + C3

 

  
 

  =
1

EI

−Pba3

6L
+

P(a -a)3

6
+ C2a + C4

 

  
 

  = y2

Since C1 = C2 ,then C3 = C4
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Applying the boundary conditons at x=0, y1=0

y1 = 0 =
1

EI

−Pb 03

6L
+ C10 + C3

 

  
 

  

So C3 = 0

and at x=L, y2=0

y2 = 0 = 1
EI

−PbL3

6L
+ P(L-a) 3

6
+ C2L + C4

 

  
 

  =

Since (L-a) = b and C1 = C2 ,and  C3 = C4 = 0

then C2 =
PbL

6
−

Pb3

6L

 

  
 

  =
Pb

6L
L2 − b2[ ]

Finally, the equations for deflection due to the bending moment are:
                                                                                                                                                                                   

For 0 ≤ x≤ a (region 1) For a≤ x≤ L (region 2)

 y1 =
−Pbx

6EIL
L2 − b2 − x2[ ]  y2 =

−Pbx

6EIL
L2 − b2 − x2[ ] −

P x -a( )3

6EI

                                                                                                                                                                                                                                                                

The deflection due to the shear component is:

For 0 ≤ x≤ a (region 1) For a≤ x≤ L (region 2)

V=Pb/L V=Pa/L

 kAG y'1= −V ⇒ y'1=
−V

kAG
= −

Pb

L

1

kAG
 kAG y'1= −V ⇒ y'1=

−V

kAG
= −

Pa

L

1

kAG

y'1∫ =
−Pb

L

1

kAG∫ ⇒ y1 =
−Pb

kLAG
x + C1 y'1∫ =

−Pa

L

1

kAG∫ ⇒ y1 =
−Pa

kLAG
x + C2
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Applying the boundary condition at x=0, y1=0,

y1 = 0 =
−Pb

kLAG
0 + C1

So C1 = 0 and y1 = −Pb
kLAG

x for  0 ≤ x ≤ a

Applying the boundary condition at x=L, y2=0,

y2 = 0 =
−Pa

kLAG
L + C2

So C2 = Pa
kAG

 and y2 = Pa
kAG

− x
L

+1
 
 

 
 

Now the total deflection relation for both bending and shear is:

                                                                                                                                                                                   

For 0 ≤ x≤ a (region 1) For a≤ x≤ L (region 2)

V=Pa/L

y2 =  
−Pbx
6EIL

L2 − b2 − x2[ ] − P x-a( )3

6EI

 

  
 

  

                                     −
Pa

kLAG

−x

L
+1 

 
 
 

y1 =  
−Pbx

6EIL
L2 − b2 − x2[ ] 

 
 
 

−
Pb

kLAG
x
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