

Solution for ME 355 Homework 7

1. 6A-6 Fig. 6-18 (p171)

2. 6A-7 Fig. 6-5 (p150)

3. 7A-5

- (a) At a given shear strain rate, viscosity of a pseudoplastic substance decreases with increasing time of exposure.
- (b) Rheocast material in which dendrites are broken up to form a globular solid phase in the melt.

4. 7A-7

- (a) Isolate from atmosphere
- (b) React with impurities
- (c) Collect inclusions
- (d) React with gases
- (e) React with specific alloying elements

5. 7B-23

- (a) Use low superheat
- (b) Use low mold temperature
- (c) Use mold made of a material of high heat conductivity

- (d) Increase cooling rates by (b) and (c) above
- (e) Inoculate the melt with nuclei to promote heterogeneous nucleation
- (f) Break up dendrites by mechanical means (vibration, shearing)
- (g) Break up dendrites by applying pressure during solidification

6. 7C-7

The problem can be simplified to calculating strain and stress developed in a 100-mm-long solid bar, fully constrained at both ends.

(a) Strain
$$e = \alpha \Delta T = (23)(10^{-6})(1100-900) = 0.0046$$

(b) Deformation of "e*l" happened in 10 min (600 sec.), Shrinkage velocity $v = e*l/t = (0.0046)(100)/600 = 7.67(10^{-4})$ mm/s From Eq. (4-17), (p102) Tensile strain rate $\dot{\varepsilon} = v/l = 7.67(10^{-4})/100 = 7.67(10^{-6})$ s⁻¹

(c) From Table 8-2 (p282), for 1015 steel, at 1000 C, C = 120 MPa; m = 0.1 Therefore: $\sigma_f = C \, \dot{\varepsilon}^m = 120 \, (7.67*10^{-6})^{0.1} = 36.9 \, \text{MPa}$

(d) From Table 5-2 (p130), at room temperature E = 200 GPa Thus, at 1000 C, E = 0.6*200 = 120 GPa Elastic stress $\sigma = e E = 0.0046(120) (10^9) = 552$ MPa Since $\sigma > \sigma_f$, plastic deformation will occur

- (e) Critique of the assumptions:
- Mold is unyielding: A sand mold would yield and the stress would be lower. Assumption is reasonable for a ceramic mold but not for a sand mold.
- Mold dimensions are unchanging: They are likely to increase while the mold is heated by the metal, thus the stresses increase too, increasing the danger of hot tearing.
- Friction on mold walls may contribute to disturbing the stresses over the length of the bar, making calculation uncertain.
- The flow stress in Table 8-2 is for large deformations and high strain rates, while the problem falls more into the creep range.

7. 7C-8 According to Chvorinov's rule (p212): $t_s \propto (V/A)^2$

Shape	Volume	Surface area	$(V/A)^2$
Sphere	$\pi d^3/6$	πd^2	0.0278
Cylinder $(h/d = 1)$	$(\pi d^2/4)d$	$\pi d^2/2 + \pi d^2$	0.0212
Cylinder $(h/d = 10)$	$(\pi d^2/4)10d$	$\pi d^2/2 + 10\pi d^2$	0.0093
Cube $(a = d)$	d^3	$6d^2$	0.0181

Thus, the longest solidification time is secured by a sphere.