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1 Derivation of the Heat Equation for Fluid Flow Problems

The purpose of this writeup is to obtain the differential equation for the temperature T (x, t) which
will be used in the discussion of finite-volume methods as well is in example problems using STAR-
CCM+. This will involve first using the first law of thermodynamics to obtain a differential equation
for the total energy per unit mass, e, and from this an equation for the internal energy, û, and
finally from this an equation for the temperature T .

1.1 The equation for the total energy per unit mass e

Consider the energy equation (the first law of thermodynamics) for a control volume:

d

dt

�

V

ρ e dV

︸ ︷︷ ︸
(i)

= Ẇ︸︷︷︸
(ii)

+ Q̇︸︷︷︸
(iii)

−
�

CS

ρ e(V · n)dA

︸ ︷︷ ︸
(iv)

, (1)

where ρ is the density and V is the velocity vector. The scalar e is the total energy per unit mass,
given by

e = û+
1

2
|V|2 + gz , (2)

where û is the internal energy per unit mass, 1
2 |V|

2 is the kinetic energy per unit mass, and gz is
the potential energy per unit mass; g is the usual gravitational acceleration, and z is the coordinate
in the direction opposite to the force of gravity. The term Q̇ is the rate that heat is being added to
the control volume, and Ẇ is the rate that work is done on the control volume. The rate of work
is often split into three parts,

Ẇ = Ẇshaft + Ẇpressure + Ẇviscous , (3)

where Ẇshaft is the rate of work done by a shaft internal to the control volume; Ẇpressure is the

rate of work by pressure forces acting at the control surfaces; and Ẇviscous is the rate of work
by viscous forces acting on the control surfaces. No internal shaft in the control volume will be
considered, so that Ẇshaft = 0. Also Ẇviscous will be neglected, assuming that the Mach number
is small.

The pressure forces act at the surfaces of the control volume. In a local region of the surface of
area dA, with outward normal n, the pressure force is −pn dA. The rate of work of the pressure
force is then −pn dA·V = −p (V ·n) dA, where V is the local fluid velocity. Therefore, integrating
over the entire control surface gives the rate of work by the pressure forces as

Ẇpressure = −
�

CS

p(V · n)dA . (4)

In Equation (1), in addition to terms (ii) and (iii) already explained, term (i) represents the
rate-of-change of total energy in the control volume, and term (iv) represents the net rate of energy
flux across the control surfaces.

When applying Equation (1) to a differential control volume, as done in class, where the volume
is dV = dx dy dz, the result is, for terms (i) and (iv) in this equation, as well as for Equation (4):
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• d

dt

�

V

ρ e dV =
∂

∂t
(ρ e) dV ;

• −
�

CS

ρ e(V · n)dA = ∇ · (ρ eV) dV ;

• Ẇpressure = −
�

CS

p (V · n) dA = −∇ · (pV) dV using Equation (4).

Using these results in Equation (1) gives, after dividing by dV,

ρ
De

Dt
= Q̇uv −∇ · (pV) = Q̇uv − p(∇ ·V)−V · ∇p , (5)

using the fact that, with the continuity equation,

∂

∂t
ρ e+∇ · (ρ eV) = ρ

∂e

∂t
+ ρV · ∇e

+ e

(
∂ρ

∂t
+ ρ∇ ·V

)
︸ ︷︷ ︸
=0 from continuity

= ρ
De

Dt

where Q̇uv = Q̇/dV is the heat flux per unit volume. This is the differential equation for the total
energy e.

1.2 The equation for the internal energy per unit mass û

The differential equation for the mechanical energy can be obtained by take the dot product of the
velocity vector V with the momentum equation giving:

ρV · DV

Dt
= −V · ∇p+ V · (ρg) + V · Fviscous , (6)

where Fviscous is the viscous force. Taking g = −gez = −∇(gz), then

ρV · g = ρV · ∇(−gz) = ρ

(
∂

∂t
(−gz)︸ ︷︷ ︸
=0

+V · ∇(−gz)
)

= ρ
D

Dt
(−gz) ,

so Equation (6) becomes

ρ
D

Dt

(
1

2
|V|2 + gz

)
= −V · ∇p+ V · Fviscous . (7)

Next, subtracting Equation (7) from Equation (5) gives, using Equation (2), gives:

ρ
Dû

Dt
= Q̇uv − p∇ ·V , (8)

the differential equation for the internal energy per unit mass, û. Note that the viscous term
V · Fviscous has been neglected, assuming low Mach number flow.
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Figure 1: Heat flux across the surface area dA.

1.3 The equation for the temperature T

The next step is to determine Q̇uv, the rate of heat transfer, per unit volume, to the differential
control volume dV. The heat flux vector q is introduced, which gives the magnitude and direction of
the heat flux. For a differential surface area dA with an outward normal n to the underlining control
volume, the rate of increase in internal energy due to the heat flux across dA is (see Figure 1):

−n · q dA .

The heat flux (heat transfer) can be due to conduction or to radiation. Only conduction will be
addressed in these notes. Summing up the rate of heat transfer across the entire control surface,
the rate of heat transfer Q̇ to a control volume is given by

Q̇ = −
�

CS

n · q dA . (9)

Applying this to a differential control volume (see Figure 2), Equation (8) becomes, after multiplying
through by dV:

ρ
Dû

Dt
dV = −

�

CS

n · q dA− p∇ ·VdV . (10)

In order to evaluate the surface integral for the differential volume element with sides of length dx,
dy, and dz, consider the evaluation of the integral for the left and right faces, respectively. With
q = (qx, qy, qz), for the left face:

−
�

CSL

n · q dA = −(−qx)

∣∣∣∣
x

dydz = +qx

∣∣∣∣
x

dydz , (11)

since n · q = −i · q = −qx at the left face. Similarly, for the right face:

−
�

CSR

n · q dA = −(+qx)

∣∣∣∣
x+dx

dydz = −(qx +
∂qx
∂x

dx)

∣∣∣∣
x

dydz , (12)

since n · q = +i · q = +qx at the right face. Summing Equations (11) and (12) gives −∂qx
∂x

dxdydz.

Similar arguments from the top and bottom, and front and back, faces results in −∂qy
∂y

dxdydz and
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−∂qz
∂z

dxdydz, respectively. Finally, summing up these three results, with dV = dxdydz,

−
�

CS

n · q dA = −
(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
dV = −∇ · q dV . (13)

When the result from Equation (13) is plugged into Equation (10), the result is, dividing out dV:

ρ
Dû

Dt
= −∇ · q− p∇ ·V . (14)
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Figure 2: Differential control volume.
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Figure 3: Heat flux from higher to lower temperature.

The next step is to determine q, considering here heat transfer only due to conduction. One
would expect that the direction of heat transfer will be from hotter to colder regions (see Figure 3).

So with T as the temperature, then if
∂T

∂x
< 0, say, then one would expect qx > 0, and vice-versa.

Furthermore, one would expect that as

∣∣∣∣∂T∂x
∣∣∣∣ increases, then so would |qx|, and vice-versa. In

general, if the temperature differences are not too large, it is found that

qx = −κ∂T
∂x

, (15)
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where κ = κ(T ), the thermal conductivity. Equation (15) is called Fourier’s law of Heat Conduction.
In three dimensions it is

(qx, qy, qz) = −κ
(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
, or (16)

q = −κ∇T

in vector notation. Plugging Equation (16) into Equation (14), the result is:

ρ
Dû

Dt
= ∇ · (κ∇T )− p∇ ·V . (17)

From here forward, it will be assumed that the temperature fluctuations are small. This implies
that

κ(T ) = κ(T0) +
dκ

dT

∣∣∣∣
T0

(T − T0) + . . . ≈ κ(T0) = κ0 , say (18)

using a Taylor series expansion of κ, where T0 is a reference temperature, κ0 is the constant value
of κ at T0, and assuming (T − T0) is ‘small’. With this, Equation (17) becomes:

ρ
Dû

Dt
= κ0∇2T − p∇ ·V . (19)

The final step is to determine the internal energy per unit mass, û, in terms of the temperature,
T . From thermodynamics, for many systems, when a system evolves incrementally from one state
to a nearby state, the change in internal energy per unit mass is given by

dû = c dT , (20)

where c is a specific heat, and usually c = c(T ). For an ideal gas, c in Equation (20) is given by
the specific heat at constant volume, cv. Therefore, considering the system to be a small volume
of fluid in motion, where the substantial derivative gives the rate of change of û for this system:

Dû

Dt
= cv

DT

Dt
(21)

Again from thermodynamics, since for an ideal gas ρ = p/RT , where R is the gas constant, then

dρ(p, T ) =
∂ρ

∂p

∣∣∣∣
T

dp+
∂ρ

∂T

∣∣∣∣
p

dT =
1

RT
dp− p

RT 2
dT ≈ − ρ

T
dT , (22)

using the expression for the ideal gas law several times. The latter approximation holds since ρ is
more sensitive to changes in T rather than p. Therefore,

Dρ

Dt
= − ρ

T

DT

Dt
. (23)

Therefore, note that, from Equation (23) and using the continuity equation,

−p∇ ·V =
p

ρ

Dρ

Dt
=
p

ρ
(− ρ
T

)
DT

Dt
= −ρRT

T

DT

Dt
= −ρ(cp − cv)

DT

Dt
(24)

using the fact that R = cp − cv. Using Equations (21) and (24) in Equation (19) gives:

ρcv
DT

Dt
= −ρ(cp − cv)

DT

Dt
+ κ0∇2T
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or, canceling the terms with cv, and moving the substantial derivative term to the LHS of the
equation:

ρcp
DT

Dt
= κ0∇2T . (25)

For liquids and for solids, cp ≈ cv ≈ c, and ∇ ·V = 0 usually, so Equation (25) can be obtained
from Equation (19) more generally. For small temperature changes, cp is approximately constant
as well, which will be assumed to be the case henceforth. Therefore, Equation (25) can be written
as

DT

Dt
= k∇2T , (26)

where k = κ/ρcp is the thermal diffusivity.

2 One-Dimensional Problem

In class and in the discussion of finite-volume numerical methods, the one-dimensional heat equa-
tion, with V = 0, will be considered. In this case Equation (26) reduces to

∂T

∂t
= k

∂2T

∂y2
. (27)

This is a partial differential equation with T as the unknown (dependent) variable, and (y, t) as
the independent variables. It is first order in time, so that to solve it usually an initial condition
must be given. It is second order in space, so that two boundary conditions are needed.

Consider the temperature T (y, t) defined over the domain 0 ≤ y ≤ L. Then generally the
following information is needed to solve for the behavior of T as a function of y and t.

• Initial Conditions: the temperature distribution at a given time t0, i.e.,

T (y, t0) = F (y) 0 ≤ y ≤ L

where F is a known function of y, and usually t0 = 0.

• Boundary Conditions: the behavior of the temperature at y = 0 and y = L. This behavior is
usually determined by an understanding of the problem. For example,

– if the temperature at y = 0 and y = L is held constant with some type of heating device,
then

T (0, y) = T0 , T (L, y) = TL

where T0 and TL are constant temperatures (or possibly functions of time). Or

– the heat flux at y = 0 and y = L is specified, e.g.,

− 1

ρcv
qy

∣∣∣∣
0

= k
∂T

∂y

∣∣∣∣
0

= 0 no heat flux, insulated, or

k
∂T

∂y

∣∣∣∣
0

= hA(T |0 − Tamb)

where h is a coefficient of heat transfer, A is the surface area at y = 0, and Tam is the
ambient temperature.
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Of course it is also possible to have mixed boundary conditions, with constant temperature bound-
ary conditions at one end and heat flux boundary conditions at the other end.

One important piece of information is the total amount of internal energy in a volume of interest,
in our case

ET =

�

CV

ρûdV = A

� L

0
ρûdy = Aρc

� L

0
T (y, t)dy , (28)

where A is the cross-sectional area of the object of interest (in the x−z directions), and c a specific
heat. Assuming the ρ, A and c are constants, then the total energy will change with time only if

the integral

� L

0
T (y, t)dy changes with time.

Consider the integral of Equation (27) over 0 ≤ y ≤ L, i.e.,

� L

0

∂T

∂t
dy =

� L

0
k
∂2T

∂y2
dy . (29)

Evaluating the LHS of this equation,

� L

0

∂T

∂t
dy =

d

dt

� L

0
T (y, t)dy =

d

dt

(
ET

ρAc

)
=

1

ρAc

d

dt
ET (t) (30)

using Leibniz’ rule in commuting the derivative and the integral. Evaluating the RHS of Equa-
tion (29), � L

0
k
∂2T

∂y2
dy = k

� L

0

∂

∂y

(
∂T

∂y

)
dy = k

∂T

∂y

∣∣∣∣L
0

= k

(
∂T

∂y

∣∣∣∣
L

− ∂T

∂y

∣∣∣∣
0

)
. (31)

Combining Equations (30) and (31) in Equation (29),

1

ρAc

d

dt
ET (t) = k

(
∂T

∂y

∣∣∣∣
L

− ∂T

∂y

∣∣∣∣
0

)
. (32)

Therefore the change in the total energy with respect to time depends on what happens at the
boundaries. In particular, for insulated boundaries, there is no heat transfer at the boundaries, i.e.,
∂T

∂y

∣∣∣∣
0,L

= 0, and so

d

dt
ET (0) = 0 , orET (t) = constant = ET (0) ,

i.e., the total internal energy in the volume is constant in time. Note that later in the course we
will find similar conservation properties for jets and wakes.

There are several reasons to compute the value of the total internal energy (or related quantities
in jets and wakes):

• it is an important feature of the problem, and

• energy conservation can be an important check on numerical solutions.
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