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There are some very good photographs of shock waves in the book An Album of Fluid Motion
by Milton Van Dyke, which is on the course website. See especially Chapters 9 (subsonic flow),
10 (shock waves), and 11 (supersonic flow). It is interesting to follow the photographs of the
‘projectile’, starting with a Mach number, based upon the projectile speed, of 0.84 in Chapter 9,
and ending with the Mach number of 1.015 in Chapter 11.

A shock wave is a region of a flow where the flow speed goes from supersonic to subsonic across
a very thin, almost discontinuous, layer. To understand shock waves, begin by considering the
control volume given in Figure 1. It is assumed that the shock is flat. Furthermore, the control
volume is assumed to move with the shock so that, in this frame of reference, the flow is steady.
Furthermore, it is assumed that the flow is normal to the shock (oblique shocks will be considered
later), and that the area of the section of the control volume normal to the flow is A.

Assume that the conditions upstream of the shock (to the left) are given, that is: V1, the shock
speed; p1, the upstream, ambient pressure; ρ1, the upstream, ambient density; and T1, the upstream,
ambient temperature. Given these upstream conditions, it is of interest, then, to determine what
the downstream conditions are, i.e.: to determine V2, p2, ρ2, and T2. To do this, the conservations
of mass and energy, the momentum balance, and the gas laws are considered.
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Figure 1: Sketch of shock wave geometry.

With the control volume moving with the shock as shown, the problem is steady-state and
one-dimensional. The continuity equation is:

d

dt

∫
CV

ρdV︸ ︷︷ ︸
=0

= −
∫
CS

ρ(V · n)dA , or (1)

0 = −(−ρ1V1A+ ρ2V2A) , or, finally

ρ1V1 = ρ2V2 . (2)

Assuming steady-state and one-dimensional, the momentum equation in the x (flow) direction
becomes,

• neglecting gravity (unimportant here);

• neglecting viscous forces at the left and right boundaries, assuming that the flow is uniform
there, so that

• there are only pressure forces at the right and left boundaries, then
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d

dt

∫
CV

ρudV︸ ︷︷ ︸
=0

= Fx −
∫
CS

ρu(V · n)dA , or (3)

0 = (p1 − p2)A− (−ρ1V1V1A+ ρ2V2V2A) , or

−ρ1V 2
1 + ρ2V

2
2 = p1 − p2 , i.e.,

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 . (4)

Note that the latter equation, although similar, is not Bernoulli’s equation.
Defining e as the total energy per unit mass, which in this case includes the kinetic [(1/2)|V|2]

and the internal (U) energies per unit mass, so that e = U + (1/2)|V|2, then the energy equation
for this steady-state, one-dimensional problem is:

d

dt

∫
CV

ρedV︸ ︷︷ ︸
=0

= Q̇+ Ẇ −
∫
CS

ρe(V · n)dA . (5)

Assuming

• no heat transfer to the control volume, i.e., Q̇ = 0,

• the only work is done by the pressure forces at the control surfaces, then the energy equation
simplifies to

0 = −
∫
CS

ρ(e+
p

ρ
)(V · n)dA . (6)

(See the handout entitled “Notes on the energy equation” for more explanation of this.)

Note that e+
p

ρ
= U +

1

2
|V|2 +

p

ρ
= h+

1

2
|V|2, where the enthalpy h is given by h = U +

p

ρ
, so

that Equation (6) becomes, using Equation (2),

0 = −ρ1V1A(h1 +
1

2
V 2
1 ) + ρ2V2A(h2 +

1

2
V 2
2 ) , or

h1 +
1

2
V 2
1 = h2 +

1

2
V 2
2 . (7)

For an idea gas, the enthalpy is given by h = cpT , where cp is the specific heat at constant
pressure, and T is the temperature. Introducing this into Equation (7), assuming that cp is constant,
and dividing by cp gives:

T1 +
V 2
1

2cp
= T2 +

V 2
2

2cp
, (8)

a reduced form of the conservation of energy. Note that with the total temperature defined by

Tt = T +
V 2

2cp
,

the energy equation, Equation (8), may be written as

Tt1 = Tt2 ,
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i.e., the total temperature is conserved. This is analogous to Bernoulli’s equation for incompressible
flows, i.e.,

p+
1

2
ρ|V|2 = p0 = constant ,

where p0 is the total pressure.
Up to this point there are three equations, Equations (2), (4), and (8), with four unknowns, T2,

V2, ρ2, and p2. The final equation is the gas law, which for an idea gas is:

p2 = ρ2RT2 , (9)

where R is the gas constant.
To work with these equations, it is useful to introduce the local Mach number M = V/c, where

the local speed of sound is given by c =
√
γRT , where γ = cp/cv is the ratio of the specific heats.

In terms of the local Mach number, the momentum equation, Equation (4), becomes, using the gas
law:

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 , or

p1 +
γp1
γRT1

= p2 +
γp2
γRT2

V 2
2 , or

p1(1 + γM2
1 ) = p2(1 + γM2

2 ) , or, finally

p1
p2

=
1 + γM2

1

1 + γM2
2

. (10)

Later we will find that, across a shock, M1 > 1 and M2 < 1, so that p2 > p1, i.e., the pressure
increases across a shock.

From the energy equation, Equation (8),

T1 +
V 2
1

2cp
= T2 +

V 2
2

2cp
, or

T1 +
T1V

2
1

T12cp
= T2 +

T2V
2
2

T22cp
.

But with γ = cp/cv and R = cp − cv,

V 2

2cpT
=

γRV 2

2cp(γRT )
=

(cp/cv)(cp − cv)

2cp
M2 =

γ − 1

2
M2 , so

T1

(
1 +

γ − 1

2
M2

1

)
= T2

(
1 +

γ − 1

2
M2

2

)
, or, finally

T2
T1

=
1 +

γ − 1

2
M2

1

1 +
γ − 1

2
M2

2

. (11)

Again, since M1 > 1 and M2 > 1 across a shock, then T2 > T1, i.e., the temperature increases
across a shock [noting that (γ − 1) > 0].

Finally, from the continuity equation, Equation (2), and using the ideal gas law and the defini-
tion of the sound speed,

p1
RT1

V1√
γRT1

√
γRT1 =

p2
RT2

V2√
γRT2

√
γRT2 , or, finally
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p1
p2

M1

M2
=

√
T1
T2
. (12)

Equations (10) and (11) can be substituted into Equation (12) to give an equation for M2 in terms
of M1. Once M2 is determined, then Equation (10) can be used to determine p2, and Equation (11)
can be used to find T2. Furthermore, given p2 and T2, the ideal gas law, Equation (9), can be used
to solve for ρ2, and the continuity equation, Equation (2), can be used to solve for V2.

The resulting equation for M2 in terms of M1 is quadratic. One solution is the trivial one,
M2 = M1, i.e., there is no shock. The other solution is:

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

. (13)

Note that this equation is symmetric in M1 and M2, i.e., if M1 is solved for in terms of M2, the
exact same equation would be obtained, with M1 and M2 interchanged. Note also that this is true
of all of the equations obtained up to this point; there is no distinction in the equations themselves
between the quantities upstream and downstream of the shock. Finally, note that Equation (13)
implies that if M1 is greater than (less than) 1, then M2 is less than (greater than) 1. Equation (13)
is plotted in Figure 2.

M2²

M1²

 (γ−1)M1² + 2
2γM1² − (γ−1)M2² =

 (γ−1)
2γ = 0.14

Figure 2: Plot of M2
2 versus M2

1 given by Equation (13).

As mentioned above, once the solution for M2 in terms of M1 is obtained, then the solution
for any downstream quantity can be obtained. For example, substituting Equation (13) into Equa-
tion (10) gives, after some considerable algebra:

p2
p1

= 1 +
2γ

(γ + 1)
(M2

1 − 1)
.
= 1 + 1.17(M2

1 − 1) , (14)

assuming that γ = 7/5 = 1.4. Note that, if M1 > 1, i.e., so that oncoming flow is supersonic, then
p2 > p1. Furthermore, if M1 = 1.5, 2.0, and 2.5, then p2/p1 = 2.46, 4.51, and 7.14. Note, however,
that for M1 in the range of 2 or more, then the oncoming flow would be hypersonic, and more
complicated thermodynamics would have to be considered. Also note that this equation is usually
written in the form:

p2 − p1
p1

=
∆p

p1
=

2γ

(γ + 1)
(M2

1 − 1) ,

where ∆p/p1 = (p2 − p1)/p1 is called the ‘shock strength’, which is often used to indicate the
strength of a shock wave.
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As an example of the change in pressure, consider the effect of a shock wave moving through a
standard atmosphere at M1 = 1.5. The standard atmospheric pressure is pa = p1 = 101.3 kPa, and
the change is pressure is given by p2/p1 = 2.46. Therefore p2 = 2.46 · p1 = 249.27 kPa, a very large
pressure. This is large but not extreme. For example, the pressure on the ocean floor where the
depth is about 1 mile (the depth of the Deepwater Horizon oil spill) is approximately pof = pa ·153!

Using Equations (2) and (9), and Equation (13), after some algebra it can be found that:

ρ2
ρ1

=
V1
V2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

,

which gives ρ2 > ρ1 and V2 < V1 for M1 > 1.
Up to this point, two possibilities exist, either M1 > 1 and M2 < 1, or vice-versa, M1 < 1 and

M2 > 1, and the equations can be satisfied by either possibility. To determine which one of these
is physically possible, the second law of thermodynamics and entropy must be brought in. For an
idea gas with constant specific heats, i.e., constant cp and cv, the change in entropy per unit mass,
s, when a system is taken from state 1 to state 2, is given by

s2 − s1 = cp ln(T2/T1)−R ln(p2/p1) . (15)

Some estimate of how the entropy will change near M1 = 1 can be obtained in the following way.

• Using the expressions for p2/p1 and T2/T1 in terms of M2
1 , as in Equation (14);

• writing M2
1 − 1 = ε, where ε is assumed to be ‘small’,

• expanding the resulting logarithms as

ln(1 + ε) = ε− ε2

2
+ · · · ,

it is found that, after considerable algebra,

s2 − s1
R

=
2γ

(γ + 1)2
(M2

1 − 1)3

3
+ higher order terms in (M2

1 − 1) .

Since the entropy cannot decrease for this adiabatic flow, then s2 > s1, and M2
1 − 1 > 0, or M1 > 1

is the only solution which is possible, consistent with the second law of thermodynamics. The
same result can be found for larger values of M2

1 − 1 by numerically evaluating Equation (15).
Furthermore, it can be shown that the increase in entropy as the flow goes through the shock can
be related to the conversion of mechanical energy into internal energy. That is, mechanical energy
is converted into random (disordered) molecular energy, resulting in large increases in the pressure,
temperature, and entropy.

When the coordinate system is switched to moving with the upstream (ambient) fluid, the
shock wave propagates to the left into the ambient fluid with a speed V1 such that V1/c1 = M1 > 1,
i.e., the shock was is traveling faster than the speed of sound. For a very weak shock, however,
∆p/p� 1. But with

∆p

p
=

2γ

(γ + 1)
(M2

1 − 1)� 1 ,

then M1
.
= 1, i.e., the shock travels at the speed of sound (it is a sound wave).
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